
MQ Technical Conference v2.0.1.8

Making MQ Application Development Easier

Mark Taylor

marke_taylor@uk.ibm.com

IBM Hursley

© Copyright IBM Corporation 2018

Presentation includes
source code

© Copyright IBM Corporation 2018

Agenda

• Overview

• Learn-MQ

• Runtime access

• New Languages

– Go

– JavaScript

© Copyright IBM Corporation 2018

Developer engagement

• MQ can be hard to get going with for new developers

• How do we make it easier for new application teams to pick up MQ and

integrate with their development practices?

• Not always been a product focus – spent more time on administration

enablement

© Copyright IBM Corporation 2018

Developer resources

>50% coders have fewer than 5
years’ professional experience*

*https://insights.stackoverflow.com/survey/2018

developerWorks

stackoverflow

Knowledge Centre

MQSeries.net

Google

Internal Doc

© Copyright IBM Corporation 2018

Developer engagement – Mission Statement

To enable a user instructed to use MQ for

the first time, to go from zero understanding

to running a sample application in a

sandbox environment with a fundamental

understanding of MQ concepts in 2 hours

To enable an application developer,

instructed to use MQ for the first time, to go

from zero understanding to writing their first

MQ application in the language and

environment of their choice within an

afternoon

© Copyright IBM Corporation 2018

LearnMQ

Finding it hard to get

developers started with

MQ?

Point them to:

developer.ibm.com/

messaging/learn-mq

Totally new to MQ?

Learn the basics

Step-by-step guide to

getting up and running

with MQ

Tutorials on building

your applications

© Copyright IBM Corporation 2018

Candidate tutorials, samples & assets

Transactions Languages JEE
Recipes &

scripts
REST

Connect

Securely

Deployment Patterns

Write a

production JMS

app

Protocols …

Write a

production

c# (.NET) app

Monitoring
Delivery

Support

Advanced

samples &

templates

Trouble-

shooting
Testing

Write a publish

Subscribe app

Write a C

app

Deliver a

microclimate

app

Deliver a Spring

App

© Copyright IBM Corporation 2018

Not just about the language or education

• Developers also need easy access to interfaces – no matter their experience

• Do not want to have to install full products

• Many IDEs and build tools integrate with public repositories

• MQ Java interfaces now available from Central Repository (Maven)

– No need to explicitly install or download

– Just reference MQ jars in application configuration

Maven: pom.xml

<dependency>

<groupId>com.ibm.mq</groupId>

<artifactId>com.ibm.mq.allclient</artifactId>

<version>9.1.0.0</version>

</dependency>

Gradle: build.gradle

dependencies {

compile("com.ibm.mq:com.ibm.mq.allclient:9.1.0.0")

}

© Copyright IBM Corporation 2018

Easier ways to get started – Java

• Many Java developers use Spring

– Can reduce amount of code needed

– MQ JMS used with Spring for many years

• Spring Boot & Auto-configure give further code reduction

– You can get a program running quickly

– With default capabilities

• MQ now has Spring Boot starter

– Versions for both Boot 1 and Boot 2

– Source on github; jar on Maven Central

build.gradle

dependencies {

compile("com.ibm.mq:mq-jms-spring-boot-starter:+")

}

https://developer.ibm.com/messaging/2018/04/03/mq-jms-spring-boot/

© Copyright IBM Corporation 2018

Easier ways to get started – runtime availability

• Docker container with full MQ server function

– Creates sample objects for developers

– Queues, topics, userids etc

• See github.com/ibm-messaging/container with several build options

• Redistributable Client packages now easier to access

– To make it easy for developers to package standalone applications

– Perhaps in a container

– No login required to download

• See https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/messaging/mqdev/redist/

© Copyright IBM Corporation 2018

Language Interfaces to MQ

© Copyright IBM Corporation 2018

Multiple APIs and Protocols

Messages from one application can be received by any

other application, independent of API or protocol.

IBM MQ supports multiple APIs and multiple

client protocols. Both proprietary and open.

APIs: MQI, JMS, MQ Light, REST …

Protocols: MQ, AMQP, MQTT, HTTP

These support a wide range of application styles,

from the simplest of messaging needs through to

the most sophisticated

MQ is simply the broker of messages produced

from any API, protocol or language

MQI
Exposes the full set of MQ capabilities

Uses the MQ protocol

JMS
Supports the full JMS API for use in many

JSE or JEE environments

MQ Light
A simple pub/sub messaging API

Uses the AMQP 1.0 protocol

MQ
MQ’s highly reliable and performant

messaging protocol

MQTT
MQ Advanced supports the MQTT protocol

Open source Eclipse Paho clients

AMQP
Support for AMQP 1.0 enables support for

open source clients such as Qpid Proton

HTTP
A very simple but secure messaging API

over REST

MQTT
Support for the MQTT API for IoT

devices

HTTP
A very simple but secure messaging API

over REST

© Copyright IBM Corporation 2018

MQ Light APIs

• MQ Light interfaces in a variety of languages

– Client source in GitHub

• And integrated with natural public repository

– JavaScript: NPM

– Java: Maven

– Ruby: gem install mqlight

– Python: pip install mqlight

• .Net information at
https://developer.ibm.com/messaging/2017/11/13/mq-light-messaging-microsoft-net-part-1/

© Copyright IBM Corporation 2018

The classic MQI

• The full-function MQI has primarily been used from C, Java and COBOL

• Other languages for the MQI have been in the product but used less

– PL/1

– RPG

– C++

– etc

• On Distributed platforms many of these are built on top of the C library

– The COBOL bindings, for example, are a small mapping layer

• The "pure" bindings (.Net, Java) have to reimplement all the protocols

© Copyright IBM Corporation 2018

Example C code

char QMName[MQ_Q_MGR_NAME_LENGTH] = {0};

strncpy(QMName, "QM1", (size_t)MQ_Q_MGR_NAME_LENGTH);

MQCONNX(QMName, /* queue manager */

&cno, /* connection options */

&Hcon, /* connection handle */

&CompCode, /* completion code */

&CReason); /* reason code */

Buffers for character strings

Fixed length – ensure no

overflow

Multiple values returned via

pointers

Function with no direct return code

None of these hard to work with,

but not always natural

Designed this way for performance,

commonality and extensibility

© Copyright IBM Corporation 2018

New interfaces - convergence of requirements

• Demonstrate monitoring capabilities of MQ with newer technologies

• Developers writing applications in a broader variety of languages

– What do they know? What do they prefer to use?

– Often do not have a choice as other aspects – toolkits, standards etc drive decisions

• Need to integrate with package managers for ease of access

© Copyright IBM Corporation 2018

Full MQI capability

• MQ Light APIs not rich enough for all the things I needed to do

• Simplified APIs are always prone to needing to expose just one more thing …

• Building on C MQI runtime libraries means not reimplementing protocol flows

– Makes the language bindings thin

• Still allowing higher level, pattern-based components to be built

– For example, a single API call to do request-and-wait-for-reply, or wait-then-send-

reply which incorporates best practices for handling CorrelId and MsgId, or poison

messages

© Copyright IBM Corporation 2018

New bindings released to GitHub

• Interfaces for Go and Node.js

designed around full MQI

function

• Provided as as-is open source

• Pull requests can be accepted

© Copyright IBM Corporation 2018

3rd party language interfaces

• Varying maintenance, capabilities, license

Perl: search.cpan.org/dist/MQSeries/

PHP: pecl.php.net/package/mqseries

Python: pythonhosted.org/pymqi/

Ruby: github.com/reidmorrison/rubywmq

• Also built on top of C MQI library

© Copyright IBM Corporation 2018

GO

https://github.com/ibm-messaging/mq-golang

© Copyright IBM Corporation 2018

Monitoring with Prometheus

• Given a requirement to work with a monitoring solution

• Prometheus was one of the most popular metric stores (time-series DB)

• Standard toolkit for getting data to Prometheus was in Go

– Collector program needed to be written in Go while also processing MQ messages

– But we had no Go API for MQ …

– There is now a Java Prometheus client, but too late for this requirement

© Copyright IBM Corporation 2018

What is Go

• Language from Google

• Often called golang (easier for searching!)

• Removes some of the dangerous features of C like pointers

• Fast compilation times

– Distinctive approaches to particular problems:

• Built-in concurrency primitives (channels, go-routines)

• Implicit object class inheritance

• Toolchain produces statically linked native binaries without external dependencies.

– Make the common things for common patterns easy

• Standard external repository managers – particularly github

– You can easily exploit these packages in your own programs

• Good set of standard packages

© Copyright IBM Corporation 2018

Where is it used

• Many projects in infrastructure and systems

• For example,

– Docker

– Hyperledger

– Prometheus

• And a large set of toolkits to help build other projects

© Copyright IBM Corporation 2018

The usual starter

package main

import "fmt"

func main() {

fmt.Println("Hello, World")

}

Indentation not critical but formatter applies it

consistently

"import" refers to standard libraries

or

to automatically-installed/downloaded packages

© Copyright IBM Corporation 2018

Getting to MQ from Go

• Go includes a mechanism – "cgo" – for calling C libraries from Go programs

• Can refer to C headers and structures in Go programs

– Making use of them, though, is a bit more tricky

– Similar to writing a JNI layer for Java/C interaction

– Explicitly state when code goes outside Go's safety boundaries

• The cgo system does not include standard C pre-processing.

– No #ifdef for conditional compilation, though there are whole-file optional inclusions

– It is possible to do some limited #ifdef at the top of the file for the C code

– Makes it harder to share code between platforms and versions

– Could be done via intermediate build step

© Copyright IBM Corporation 2018

The design

• Go deals with "packages"

– Analagous to libraries in C, package in Java

• Created an ibmmq package that maps the MQI into and out of Go

– Layered on top of the MQ C client interface

– To build it requires the C client and SDK

• Functions (MQI verbs) and structures

• Constants made available in Go-native format

• Making the MQI look more natural to a Go programmer

– Structures use Go strings

© Copyright IBM Corporation 2018

Function calls

• A Go function can return multiple results, one of which usually indicates errors

becomes

• where qmgr encapsulates the hConn

• and err encapsulates both cc and rc values

• "if err != nil …" for error checking (and note no parens on the if)

• Based on MQI verb names rather than Java's qMgr.accessQueue() style

MQOPEN(hConn, &hObj, &mqOD, options, &cc, &rc);

hObj, err := qmgr.Open(mqOD, options)

© Copyright IBM Corporation 2018

Start of an MQ program

import (

"fmt"

"os"

"strings"

"github.com/ibm-messaging/mq-golang/ibmmq"

)

Where do we get it from

© Copyright IBM Corporation 2018

mqod := ibmmq.NewMQOD()

openOptions = ibmmq.MQOO_OUTPUT |

ibmmq.MQOO_FAIL_IF_QUIESCING |

ibmmq.MQOO_INPUT_AS_Q_DEF

mqod.ObjectType = ibmmq.MQOT_Q

mqod.ObjectName = "SYSTEM.DEFAULT.LOCAL.QUEUE"

qObject, err = qMgr.Open(mqod, openOptions)

if err != nil {

fmt.Println(err)

}

Opening a queue

mqod := ibmmq.NewMQOD()

openOptions = ibmmq.MQOO_OUTPUT |

ibmmq.MQOO_FAIL_IF_QUIESCING |

ibmmq.MQOO_INPUT_AS_Q_DEF

mqod.ObjectType = ibmmq.MQOT_Q

mqod.ObjectName = "SYSTEM.DEFAULT.LOCAL.QUEUE"

qObject, err = qMgr.Open(mqod, openOptions)

if err != nil {

fmt.Println(err)

}

Initialise default values

Refer to constants

Simple string

Call MQ and get hObj

© Copyright IBM Corporation 2018

mqod := ibmmq.NewMQOD()

openOptions = ibmmq.MQOO_OUTPUT |

ibmmq.MQOO_FAIL_IF_QUIESCING |

ibmmq.MQOO_INPUT_AS_Q_DEF

mqod.ObjectType = ibmmq.MQOT_Q

mqod.ObjectName = "SYSTEM.DEFAULT.LOCAL.QUEUE"

qObject, err = qMgr.Open(mqod, openOptions)

if err != nil {

fmt.Println(err)

}

Opening a queue

mqod := ibmmq.NewMQOD()

openOptions = ibmmq.MQOO_OUTPUT |

ibmmq.MQOO_FAIL_IF_QUIESCING |

ibmmq.MQOO_INPUT_AS_Q_DEF

mqod.ObjectType = ibmmq.MQOT_Q

mqod.ObjectName = "SYSTEM.DEFAULT.LOCAL.QUEUE"

qObject, err = qMgr.Open(mqod, openOptions)

if err != nil {

fmt.Println(err)

}

Initialise default values

Refer to constants

Simple string

Call MQ and get hObj

© Copyright IBM Corporation 2018

mqod := ibmmq.NewMQOD()

openOptions = ibmmq.MQOO_OUTPUT |

ibmmq.MQOO_FAIL_IF_QUIESCING |

ibmmq.MQOO_INPUT_AS_Q_DEF

mqod.ObjectType = ibmmq.MQOT_Q

mqod.ObjectName = "SYSTEM.DEFAULT.LOCAL.QUEUE"

qObject, err = qMgr.Open(mqod, openOptions)

if err != nil {

fmt.Println(err)

}

Putting a message

mqmd := ibmmq.NewMQMD()

pmo := ibmmq.NewMQPMO()

mqmd.Format = "MQSTR"

msg := "Hello from Go"

buffer := []byte(msg)

err = qObject.Put(mqmd, pmo, buffer)

if err != nil {

fmt.Println(err)

}

Some more strings

No need to say how long

message is

Go has '=' and ':='

© Copyright IBM Corporation 2018

mqmd := ibmmq.NewMQMD()

pmo := ibmmq.NewMQPMO()

mqmd.Format = "MQSTR"

msg := "Hello from Go"

buffer := []byte(msg)

err = qObject.Put(mqmd, pmo, buffer)

if err != nil {

fmt.Println(err)

}

mqod := ibmmq.NewMQOD()

openOptions = ibmmq.MQOO_OUTPUT |

ibmmq.MQOO_FAIL_IF_QUIESCING |

ibmmq.MQOO_INPUT_AS_Q_DEF

mqod.ObjectType = ibmmq.MQOT_Q

mqod.ObjectName = "SYSTEM.DEFAULT.LOCAL.QUEUE"

qObject, err = qMgr.Open(mqod, openOptions)

if err != nil {

fmt.Println(err)

}

Putting a message

mqmd := ibmmq.NewMQMD()

pmo := ibmmq.NewMQPMO()

mqmd.Format = "MQSTR"

msg := "Hello from Go"

buffer := []byte(msg)

err = qObject.Put(mqmd, pmo, buffer)

if err != nil {

fmt.Println(err)

}

Some more strings

No need to say how long

message is

© Copyright IBM Corporation 2018

Getting a message

mqmd := ibmmq.NewMQMD()

pmo := ibmmq.NewMQPMO()

mqmd.Format = "MQSTR"

msg := "Hello from Go"

buffer := []byte(msg)

err = qObject.Put(mqmd, pmo, buffer)

if err != nil {

fmt.Println(err)

}

var datalen int

getmqmd := ibmmq.NewMQMD()

gmo := ibmmq.NewMQGMO()

gmo.Options = ibmmq.MQGMO_NO_SYNCPOINT |

ibmmq.MQGMO_FAIL_IF_QUIESCING | ibmmq.MQGMO_WAIT

gmo.WaitInterval = 3000

buffer := make([]byte, 32768)

datalen, err = qObject.Get(getmqmd, gmo, buffer)

if err != nil {

fmt.Println(err)

mqret := err.(*ibmmq.MQReturn)

if mqret.MQRC == ibmmq.MQRC_NO_MSG_AVAILABLE {

err = nil

}

} else {

fmt.Printf("Got message of length %d: ", datalen)

fmt.Println(strings.TrimSpace(string(buffer[:datalen])))

}

Where will message data go

Look at MQRC value

© Copyright IBM Corporation 2018

var datalen int

getmqmd := ibmmq.NewMQMD()

gmo := ibmmq.NewMQGMO()

gmo.Options = ibmmq.MQGMO_NO_SYNCPOINT |

ibmmq.MQGMO_FAIL_IF_QUIESCING | ibmmq.MQGMO_WAIT

gmo.WaitInterval = 3000

buffer := make([]byte, 32768)

datalen, err = qObject.Get(getmqmd, gmo, buffer)

if err != nil {

fmt.Println(err)

mqret := err.(*ibmmq.MQReturn)

if mqret.MQRC == ibmmq.MQRC_NO_MSG_AVAILABLE {

err = nil

}

} else {

fmt.Printf("Got message of length %d: ", datalen)

fmt.Println(strings.TrimSpace(string(buffer[:datalen])))

}

Getting a message

mqmd := ibmmq.NewMQMD()

pmo := ibmmq.NewMQPMO()

mqmd.Format = "MQSTR"

msg := "Hello from Go"

buffer := []byte(msg)

err = qObject.Put(mqmd, pmo, buffer)

if err != nil {

fmt.Println(err)

}

var datalen int

getmqmd := ibmmq.NewMQMD()

gmo := ibmmq.NewMQGMO()

gmo.Options = ibmmq.MQGMO_NO_SYNCPOINT |

ibmmq.MQGMO_FAIL_IF_QUIESCING | ibmmq.MQGMO_WAIT

gmo.WaitInterval = 3000

buffer := make([]byte, 32768)

datalen, err = qObject.Get(getmqmd, gmo, buffer)

if err != nil {

fmt.Println(err)

mqret := err.(*ibmmq.MQReturn)

if mqret.MQRC == ibmmq.MQRC_NO_MSG_AVAILABLE {

err = nil

}

} else {

fmt.Printf("Got message of length %d: ", datalen)

fmt.Println(strings.TrimSpace(string(buffer[:datalen])))

}

Where will message data go

Look at MQRC value

© Copyright IBM Corporation 2018

The mqmetric package

• Also in the repository is the mqmetric package to handle some PCF operations

• Comparable to the Java PCF classes

• Created to allow execution of basic queries and parse responses

– Not all PCF element structures, just the ones needed for the monitoring agents

© Copyright IBM Corporation 2018

Grafana dashboard

© Copyright IBM Corporation 2018

What is missing

• Not all the MQI has been implemented

• Missing verbs: MQSET, MQxxxMP, MQCB/MQCTL, MQSTAT, MQBEGIN

• Not all the structure fields have been implemented (eg Distribution Lists)

• No message header generation or parsing except for some PCF

– Structures like the RFH2, DLH headers

© Copyright IBM Corporation 2018

Current status

• Original repository now split to make it easier to get just the pieces you need

• mq-golang has the core MQI and PCF packages

– Some sample code to demonstrate use of most functions

– Assumes you already know the MQI principles from another language

• mq-metric-samples has Prometheus, Cloudwatch etc monitor programs

– Along with a "vendor" tree

• How dependencies can be managed within the Go ecosystem

• Currently being managed and enhanced by the MQ Cloud team

© Copyright IBM Corporation 2018

Future thoughts

• Further simplify build and distribution processes

• Add more focussed samples to demonstrate specific features

– Equivalents of amqsput etc

– Instead of one or two all-embracing demonstrations

• Reduce number of unimplemented verbs and fields

• (Internal) See what can be automatically generated to reduce effort of hand-

crafted layers

© Copyright IBM Corporation 2018

https://github.com/ibm-messaging/mq-mqi-nodejs

© Copyright IBM Corporation 2018

What is Node.js

• Run-time environment to execute standalone JavaScript programs

– Rather than embedded in HTML pages, executed by browser

• Main technical distinction: highly asynchronous, for event-driven programming

– Lots of tasks handled via callback functions

– All user code runs on a single main thread (no parallel execution)

• No real relation to Java apart from the name and some syntax

• Standard external repository manager – npm

– You can (all too) easily reference and use these packages in your own programs

© Copyright IBM Corporation 2018

Where is it used

• Many users of "server" applications written in Node.js

– https://www.netguru.co/blog/top-companies-used-nodejs-production

• Organisations listed include Netflix, ebay, Wal-mart, Uber, NASA

https://www.netguru.co/blog/top-companies-used-nodejs-production

© Copyright IBM Corporation 2018

The usual starter

console.log("Hello, World")

Rather simple!

© Copyright IBM Corporation 2018

The usual starter and an example of callback

console.log("Hello, World")

Rather simple!

const fs = require('fs');

fs.copyFile('source.txt', 'destination.txt', function (err) {

if (err) throw err;

console.log('source.txt was copied to destination.txt');

});

Defines a function that is invoked after the copy has completed

© Copyright IBM Corporation 2018

The design

• One package, ibmmq, that exports the MQI

– Structures, functions and constants

• Async model with exceptions as optional alternative

– If no callback provided, then most functions indicate errors via exception

– Some functions always require callback

• Most MQI calls are really synchronous

– They run immediately to completion on the main execution thread

– MQGET is different

© Copyright IBM Corporation 2018

Getting to MQ from Node.js

• Packages on npm enable access to C interfaces

– "ffi" (Foreign Function Interface) is the equivalent of dlopen/dlsym

– "ref" converts between JavaScript datatypes and raw byte buffers

• No direct use of C interface elements was used

– All structure mappings created by hand

– There are ways to import/convert C headers but those still need lots of manual fixup

– Similar to a Java/JNI layer

• Did consider a C++ "Addon" which might permit more asynchronous MQI calls

– But would probably not help with MQGET callbacks

– And rather complex to write

© Copyright IBM Corporation 2018

MQGET

• Package provides Get() and GetSync() verbs, with unique GetDone()

– xxxxSync() is common JS pattern

• GetSync() is a blocking wait

– Not recommended in Node.js programs as it stops any other work being done

– OK for when WaitInterval is zero

• Get() is an asynchronous operation

– Callback returns data or failure

– Keeps returning more messages until GetDone() is called – similar to MQCB model

– Implemented as a polling MQGET because real MQCB/MQCTL could not be used

– Poll intervals can be tuned

• Looking at a native async operation for some application patterns

© Copyright IBM Corporation 2018

Opening a queue

mq = require('ibmmq');

MQC = mq.MQC;

…

var od = new mq.MQOD();

var qName = "SYSTEM.DEFAULT.LOCAL.QUEUE";

od.ObjectName = qName;

od.ObjectType = MQC.MQOT_Q;

var openOptions = MQC.MQOO_INPUT_AS_Q_DEF;

mq.Open(hConn,od,openOptions,function(err,hObj) {

if (err) {

console.log("MQ call failed: " + err.message);

} else {

console.log("MQOPEN of %s successful",qName);

getMessages(hObj);

}

});

Defines a function that is

invoked after the Open has

completed

Work with strings and

use the constants

Access the package

Access the constants within the package

Convenient pre-formatted

error message

© Copyright IBM Corporation 2018

Synchronous Get
function getMessage(hObj) {

var buf = Buffer.alloc(1024);

var mqmd = new mq.MQMD();

var gmo = new mq.MQGMO();

gmo.Options = MQC.MQGMO_NO_SYNCPOINT | MQC.MQGMO_NO_WAIT |

MQC.MQGMO_CONVERT | MQC.MQGMO_FAIL_IF_QUIESCING;

mq.GetSync(hObj,mqmd,gmo,buf,function(err,len) {

if (err) {

if (err.mqrc == MQC.MQRC_NO_MSG_AVAILABLE)

console.log("no more messages");

else

console.log("MQ call failed: " + err.message);

} else {

if (mqmd.Format=="MQSTR")

console.log("message <%s>", decoder.write(buf.slice(0,len)));

else

console.log("binary message: " + buf.slice(0,len));

}

});

}

Where message

data will end up

Sync is OK for

NO_WAIT

Can look at

MQRC value

© Copyright IBM Corporation 2018

function getMessages(hObj) {

var md = new mq.MQMD();

var gmo = new mq.MQGMO();

gmo.Options = MQC.MQGMO_NO_SYNCPOINT | MQC.MQGMO_WAIT |

MQC.MQGMO_CONVERT | MQC.MQGMO_FAIL_IF_QUIESCING;

gmo.MatchOptions = MQC.MQMO_NONE;

gmo.WaitInterval = waitInterval * 1000; // from seconds

// Tune down poll interval to 0.5s for demo

mq.setPollTime(500);

mq.Get(hObj,md,gmo,getCB);

}

Asynchronous Get

function getCB(err, hObj, gmo,md,buf) {

if (err) {

if (err.mqrc == MQC.MQRC_NO_MSG_AVAILABLE)

console.log("No more messages available.");

else

console.log("MQ call failed: " + err.message);

mq.GetDone(hObj);

} else {

if (md.Format=="MQSTR")

console.log("message <%s>", decoder.write(buf));

else

console.log("binary message: " + buf);

}

}

Disable callback when no

more messages needed

Callback given details of

the received message

Refer to callback function

© Copyright IBM Corporation 2018

API documentation via JSDoc

© Copyright IBM Corporation 2018

$ cat package.json

{

"name": "amqsput",

"version": "0.0.1",

"description": "demo MQ API",

"main": "amqsput.js",

"dependencies": {

"ibmmq": ">=0.7.0"

}

}

Automatic installation during deployment

• Refer to ibmmq in your package

and C runtime will be

automatically installed

$ cat package.json

{

"name": "amqsput",

"version": "0.0.1",

"description": "Demo MQ API",

"main": "amqsput.js",

"dependencies": {

"ibmmq": ">=0.7.0"

}

}

$ npm install

... (messages show install of other pieces) ...

> ibmmq@0.7.0 postinstall

/tmp/node_modules/ibmmq

> node postinstall.js

Downloading IBM MQ Redistributable C Client

runtime libraries - version 9.0.5.0

Unpacking libraries...

Removing 9.0.5.0-IBM-MQC-Redist-LinuxX64.tar.gz

amqsput@0.0.1 /tmp

└─┬ ibmmq@0.7.0

├─┬ ffi@2.2.0

│ ├── bindings@1.2.1

│ ├─┬ debug@2.6.9

... (more about the dependency tree)

© Copyright IBM Corporation 2018

Containers

• The samples include a Dockerfile showing how to build a container with just

your Node.js program in it

• And how to configure client connectivity to a queue manager

$ cd node_modules/ibmmq/samples

$./run.docker

Sending build context to Docker daemon 87.04kB

Step 1/13 : FROM debian:jessie-slim

---> f1ff1c889d54

Step 2/13 : ENV NODE_USER app

...

Step 13/13 : CMD node amqsput ${DOCKER_Q} ${DOCKER_QMGR}

---> Using cache

---> 0cd6e7086633

Successfully built 0cd6e7086633

Successfully tagged mq-node-demo:latest

Sample AMQSPUT.JS start

MQ call failed in CONNX: MQCC = MQCC_FAILED [2] MQRC = MQRC_NOT_AUTHORIZED [2035]

© Copyright IBM Corporation 2018

Current status

• All MQI verbs implemented except for MQCTL/MQCB

• Helper for building and parsing DLH recently made available

– Along with a sample program to show how to use it

• No helpers for other headers such as RFH2

• No PCF classes in this library

© Copyright IBM Corporation 2018

Summary

• This presentation has described efforts to improve the developer experience

• To learn about MQ faster

• To make it easier to use MQ from modern development environments

• Feedback will inform future development in these areas

© Copyright IBM Corporation 2018

Any questions?

