
MQ Technical Conference v2.0.1.8

IBM MQ
as a

Reactive System

Lee Wheaton

September 25, 2018 15:45
September 26, 2018 15:30

MQ Technical Conference v2.0.1.8

IBM MQ as a Reactive System

• Disclaimer

• The web sites listed in this presentation belong to their

respective owners, and as such, all rights are reserved by

these owners. These web sites are provided for informational

purposes only and are provided “AS IS” without warranty of

any kind. It should not be construed that the author of this

presentation or MQTC is endorsing or recommending these

websites or the companies and products listed therein. Any

visits you make to these web sites are done strictly at your

own risk.

• As of September 20, 2018, these web links were still valid

URL’s.

MQ Technical Conference v2.0.1.8

Session Topics

The following topics will be leveraged in this session to highlight

the features, flexibility and capabilities of IBM MQ as a Reactive

System:

• Transaction & Software Pipeline Principles

• The Reactive Manifesto

• IBM MQ as a Reactive System

• IBM MQ Reactive Programming

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

Transaction & Software

Pipeline Principles

MQ Technical Conference v2.0.1.8

Pipelines and Enterprise Architecture

Enterprise Architecture principles and concept of Interchangeable Pipes (or plug ‘n play):

• “Principle 16: Technology Independence

Statement: Applications are independent of specific technology choices and therefore can

operate on a variety of technology platforms.

Rationale: Independence of applications from the underlying technology allows

applications to be developed, upgraded, and operated in the most cost-

effective and timely way. Otherwise technology, which is subject to continual

obsolescence and vendor dependence, becomes the driver rather than the

user requirements themselves. Realizing that every decision made with

respect to IT makes us dependent on that technology, the intent of this

principle is to ensure that Application Software is not dependent on specific

hardware and operating systems software.”

Implications: Middleware should be used to decouple applications from specific software

solutions.

Source: TOGAF: 20.6.3 Application Principles

• “Loose coupling permits a clean separation of concerns (temporal, technological, and

organizational) between the parts in a solution, enabling flexibility and agility in both

business processes and IT systems.”

Source: IBM developerWorks: Exploring the Enterprise Service Bus

IBM MQ as a Reactive System

http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html
https://www.ibm.com/developerworks/webservices/library/ar-esbpat1/

MQ Technical Conference v2.0.1.8

Transaction and Software Pipelines: Background (1)

• Chip manufacturers used to be able to double the speed of sequential processors

around every two years (see Moore’s law). As this paradigm was becoming

unsustainable, chip manufacturers changed their approach to produce multicore

processor chips to allow them to maintain the ability to increase processor

performance.

• However, to use multicore processors to their fullest, applications need to employ

parallel processing at the processor, task and data level to derive the best benefits,

particularly for environments with high traffic volumes requiring low response times.

Reference: Intel: Parallel Computing: Background

• “The challenge of finding a business-oriented approach to parallel processing is

answered by Software Pipelines. The architecture is highly scalable and flexible. It

executes business services independent of location, and in such a way as to maximize

throughput on available computing resources, while easily meeting a vast array of

complex business application requirements.”

Source: Cory Isaacson: Software Pipelines and SOA

• The Reactive Manifesto, discussed later, expands further on pipeline principles and

reactive architecture. However, it does not go into the same level of detail on multicore

parallel processing as noted in Cory’s book.

IBM MQ as a Reactive System

https://en.wikipedia.org/wiki/Moore's_law
http://www.intel.com/pressroom/kits/upcrc/ParallelComputing_backgrounder.pdf
https://books.google.com/books?id=WUjQU81mKmsC&pg=PT72&lpg=PT72&dq=downstream+transaction+bottlenecks&source=bl&ots=8ZnGTWIbnY&sig=At6hwJ1WxxvJoeQkCiRtQbElat8&hl=en&sa=X&ved=0ahUKEwinkqm1x9rJAhWKLB4KHd6cC8wQ6AEIGTAB#v=onepage&q=downstream%20transaction%20bottlenecks&f=false

MQ Technical Conference v2.0.1.8

Transaction and Software Pipelines: Background (2)

• Cory Isaacson’s book “Software Pipelines and SOA describes several

techniques for bringing parallel computing to mainstream software

development.”. Unless otherwise noted, the remaining content for this section

of the presentation will contain paraphrased excerpts from Cory’s book.

• “a pipeline is a control mechanism that receives and performs delegated

tasks, with the option of then delegating tasks in turn to other pipelines in

the system as required.”

• Note-water molecules normally run in only one direction through a pipe

which is analogous to how asynchronous transactions behave.

• “You can group multiple pipelines into fully distributed, peer-to-peer pools;

each pipeline processes a portion of an application or process. And

because you can configure each pool to run on a specific local or remote

server, the system can execute tasks anywhere on a network.”

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

Transaction and Software Pipelines Principles (1)

InputRate = OutputRate

InputRate and OutputRate will always be the same. A software system can’t accept more

transactions than it can process.

InputRate must be <= ProcessRate

The InputRate must be reduced to accommodate the ProcessRate/capacity of all

downstream components or processes. Otherwise backpressure can occur or a

downstream component may fail.

OR ProcessRate must be increased to match the InputRate

All downstream components or processes must be able to accommodate the input rate of

any upstream process or component. If the ProcessRate is insufficient, then additional

pipelines (or other solutions) are needed to service the InputRate.

Friction and restriction limit the flow

Any restriction in a pipe limits the overall flow of fluid through the system and restricts and

reduces both inflow and outflow. Restrictions are caused by crimps and bends in a pipe.

In IT terms, each technology component in a pipeline must be restriction free.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

Transaction and Software Pipelines Principles

Pipeline Distributor capacity must be >= InputRate

A pipeline distributor directs traffic coming from one pipe into 2 or more outbound pipes.

The distributor provides a way to add more backend capacity/pipelines to match the InputRate and

can allow traffic to be selectively siphoned off and rerouted.
e.g. tee fitting or cross fitting with optional reducer fitting. In IT terms, think load balancing device/software.

Formula to Determine the Optimum Number of Downstream Pipelines

numberofpipelines = DistributorTPS (rate) / ProcessTPS (rate)

Add a fudge factor to account for future growth.
e.g. A pipeline distributor can process 2000 TPS and feeds into four pipelines that each process 500 TPS.

NOTE-Rightsize pipelines to avoid wasting resources and incurring unnecessary costs.

Buffer Area

Plumbing systems can have overflow pipes or reservoirs that take the pressure off the pipeline and

feed the overflow back into the pipeline when conditions permit. If there’s no buffer in which

transactions can queue up before they get to ‘their destination’, you can lose transactions. Note-MQ

queues have buffer capabilities.

The Response Time and Throughput Factor

Note-As the response time goes down…the throughput rate (capacity) requirement$ normally go up.

If it takes a 1” pipe two hours to fill a swimming pool, then ideally, a 2” pipe will do it in one hour.

ie adding capacity. All components in a pipeline need to optimize their throughput (GIGO).

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

Transaction and Software Pipelines Principles

Figure: Compatible Traffic Pipelines

InputRate is <= ProcessRate

Source: Lee Wheaton@MQTC 2018

IBM MQ as a Reactive System

Client Input IBM MQ Servicing Provider

MQ Technical Conference v2.0.1.8

Transaction and Software Pipelines Principles

IBM MQ as a Reactive System

Client Input IBM MQ Servicing Provider

Queue

Buffer

Back

Pressure

Back

Pressure

Back

Pressure

Compatible

Queue Buffer &

Restriction

Queue Buffer &

Restriction

Restriction

Restriction

Source: Lee Wheaton@MQTC 2018

MQ Queue Manager and/or Servicing

Provider may be swamped and suffer an

outage*. MQ buffer shelters Servicing

Provider. Client experiences increased

response times or receives no responses.

Too much back pressure and Client fails.

*MQ can be configured to protect itself

Servicing Provider may be under duress at

peak times, but MQ buffer coupled with

task throttling can protect it. Client may

experience increased response times.

MQ Queue Manager either holds up or

not*. If queue manager still viable, Client

may experience increased response times

at peak traffic times and back pressure.

Figure: Mismatched Pipelines

InputRate is > ProcessRate

MQ Technical Conference v2.0.1.8

Transaction and Software Pipelines Principles

Figure: Increasing the Process Rate by Adding a Pipeline Distributor

and Pipelines

IBM MQ as a Reactive System

MQ Queue Manager and a Service

Provider are still restrictions on

traffic flow, but adding more load

balanced instances or pipelines

mitigates this issue. This design

could be leveraged for parallel

processing as well.

D

i

s

t

r

i

b

u

t

o

r

Note-Right size the number of

pipelines you add to avoid

having underutilized pipes.

Source: Lee Wheaton@MQTC 2018

Client Input IBM MQ Servicing Provider

MQ Technical Conference v2.0.1.8

Pipelines within Pipelines or Systems within Systems

IBM MQ as a Reactive System

Source: Lee Wheaton@SHARE Pittsburgh 2014: What’s Wrong with MQ?

MQ Technical Conference v2.0.1.8

The Reactive Manifesto

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Background
• The Reactive Manifesto is a blueprint for building Responsive, Resilient,

Elastic and Message Driven systems and applications to meet current and

future business requirements using time tested principles.

• The Reactive Manifesto was formulated in 2013 and refined in 2014 by

Jonas Bonér, Dave Farley, Roland Kuhn, Martin Thompson and others.

• The Reactive Manifesto encapsulates and expands on pipeline principles to

provide a more coherent architectural blueprint

• Proactive-anticipating an event or situation will occur and resolving (or

mitigating) it in advance before it does occur

• Reactive-acting in response to an event or situation real time (when it

occurs) rather than creating or controlling it.

• Manifesto-a written statement declaring publicly the intentions, motives, or

views of its issuer

• The Reactive Manifesto can be found at https://www.reactivemanifesto.org/

• Additional Info: Kuhn with Hanafee & Allen: Reactive Design Patterns

IBM MQ as a Reactive System

https://www.reactivemanifesto.org/
https://www.manning.com/books/reactive-design-patterns

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Premise (1)
Content from the Reactive Manifesto (used for the rest of this section):

• “Organisations … are … discovering patterns for building software that look

the same.”

• “application requirements have changed dramatically in recent years...Today

applications are deployed on everything from mobile devices to cloud-based

clusters running thousands of multi-core processors.”

• “Users expect millisecond response times and 100% uptime.”

• “a coherent approach to systems architecture is needed” to meet demands

• “we want systems that are Responsive, Resilient, Elastic and Message

Driven. We call these Reactive Systems”

• Systems built as Reactive Systems are:
• more flexible, resilient, loosely-coupled and scalable

• easier to develop and amenable to change

• more tolerant of failure (and when failure does occur they meet it with

elegance rather than disaster)

• highly responsive (giving users effective interactive feedback & productivity)

• better positioned to meet modern (and future) demands

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Premise (2)
• “Large systems are composed of smaller ones and therefore depend on the

Reactive properties of their constituents. This means that Reactive Systems

apply design principles so these properties apply at all levels of scale, making

them composable.”

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Construct
The Four Principles of the Reactive Manifesto

Source: The Reactive Manifesto

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Responsive Principle

Responsive Attributes

• The system responds in a timely manner if at all possible

• Problems may be detected quickly and dealt with effectively

• Provides rapid and consistent response times

• Provides a consistent quality of service.

This consistent behaviour in turn simplifies error handling, builds end user

confidence, and encourages further interaction.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Resilient Principle
Resilient Attributes

• The system (service) stays responsive in the face of failure.

Any system that is not resilient will be unresponsive after a failure.

• Resilience is achieved by:
✓ Replication - Executing a component simultaneously in different places

i.e. workload is distributed using multiple threads, processes, network nodes or

computing centers

✓ Containment - The client of a component is not burdened with handling the

components’s failures. Failures are contained within each component

ensuring that parts of the system can fail and recover without

compromising the system as a whole.

✓ Isolation – Decoupling the sender and receiver by using asynchronous boundaries and

communicating through message-passing

✓ Delegation - Delegating a task asynchronously to another component which allows the

delegating component to perform other processing (i.e. non-blocking)

• Recovery of each component is delegated to another (external) component and

high-availability is ensured by replication where necessary.

IBM MQ as a Reactive System

https://www.reactivemanifesto.org/glossary#Replication
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Delegation

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Elastic Principle
Elastic Attributes

• Scalability - the system needs to be scalable to allow it to benefit from the

dynamic addition, or removal, of resources at runtime.

• Elasticity - the throughput of a system scales up or down automatically to

meet varying demand as a resource is proportionally added or removed.

• Elasticity builds upon scalability and expands on it by adding the notion of

automatic resource management. Reactive Systems can react to

changes in the input rate by increasing or decreasing the resources

allocated to service these inputs.

• The system stays responsive under varying workload. The system design

has no contention points or central bottlenecks which results in the ability

to shard or replicate components and distribute inputs among them.

• Reactive Systems support predictive, as well as Reactive, scaling

algorithms by providing relevant live performance measures. They

achieve elasticity in a cost-effective way on commodity hardware and

software platforms.

IBM MQ as a Reactive System

https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Elasticity

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Message Driven Principle
Message Driven Attributes

• Reactive Systems establish boundaries between components to ensure

loose coupling, isolation and location transparency.

• Reactive Systems depend on asynchronous message-passing to

establish these boundaries for them.
• A message is an item of data that is sent to a specific destination.

• A message can contain an encoded event as its payload.

• Employing explicit message-passing enables load management, elasticity, and

flow control by shaping and monitoring the message queues in the system and

applying back-pressure when necessary [to protect downstream components

from failing due to an unsustainable load].

• Asynchronous message-passing is a Non-blocking protocol that allows

recipients to only consume resources while they’re active resulting in less

system overhead [across the board].

• A boundary provides the means to delegate failures as messages.
• Location transparent messaging makes it possible for the management of

failure to work with the same constructs and semantics across a cluster or

within a single host.

IBM MQ as a Reactive System

https://www.reactivemanifesto.org/glossary#Location-Transparency
https://www.reactivemanifesto.org/glossary#Asynchronous
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Failure

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Message Driven Principle
Message Driven Attributes: Blocking versus Non-Blocking
Example 1: Shows blocking of further processing (i.e. wait state) across the board using a

synchronous-like protocol until control is returned back to each component. e.g.

Distributed, AOR1 and AOR2 are suspended until AOR3 completes it’s work.

Several mirror tasks and record locks are in play and TXN1 and CSMI tie up

processing slots that count against the CICS regions Max Tasks setting. More

pressure is brought to bear on the front-end system if responses are not timely

enough to release connections needed for new connections. Abend affects 3 AOR

Example 2: Shows non-blocking or async protocol resulting in significantly less overhead.

Assumption that Prog1/2/3 can stand alone. Guaranteed delivery comes into play.

IBM MQ as a Reactive System

CICS AOR1

TXN1

TXNPROG1

200ms

CICS AOR2

CSMI (XUOW)

TXNPROG2

500ms

CICS AOR3

CSMI (XUOW)

TXNPROG3

300ms

Distributed

P2P

~800

Wait

Time

~300

Wait

Time

Source: Lee Wheaton@MQTC 2018

CICS AOR1

TXN1

TXNPROG1

200ms

CICS AOR2

TXN2

TXNPROG2

500ms

CICS AOR3

TXN3

TXNPROG3

300ms

Distributed

P2P

Note that TXN1, TXN2 and TXN3 could also be run in parallel since they are all standalone.

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Proposed Principle?
Guaranteed Delivery Principle (1)

• Guaranteed Delivery of messages is the ideal goal, especially for

messages critical to the business, it’s customers and regulators.

• What’s the sense in creating the best proactive/reactive systems if we

can’t deliver the message with integrity to its correct destination?
• Can you afford to lose 1% of your transactions and/or not know where they went?

• Can you lose one message worth over a million dollars?

• A time sensitive message is delayed and goes stale. Any consequences/penalties?

• Can you afford to lose the confidence of your customers?

• Critical messages should be trackable and never lost. However, if a

message is undeliverable, then one Reactive approach is to have a re-

playable Repository to accept such messages like IBM MQ’s DLQ.

• ‘Assured Delivery’ comes into play due to lack of control over the people

factor, technology limitations/design and product upgrades/compatibility.
e.g. a developer codes an MQGET without syncpoint control and the production

program version gets a message and then abends - losing the message

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

The Reactive Manifesto: Proposed Principle?
Guaranteed Delivery Principle (2)

Attributes:

• A Message is delivered once and only once

• Messages are delivered within a timely manner (e.g. SLA, shop standard)

• Developers persist critical messages, use syncpoint control and react

correctly to abnormal return codes

• Authentication of the sender, the receiver and other nodes as needed

• Transaction and Data Integrity is maintained across the pipeline (e.g. XA)

• Secured Pipelines to prevent Intrusions/Hacks

• Undeliverable messages should not be lost and are traceable (i.e. audit

logs, Event messages). A replayable Repository (e.g. Transmit Queue,

Dead Letter Queue) should be the storage medium for such messages.

• Messages arriving at their destination queues are picked up for processing

by their service provider in an elastic manner. (e.g. triggering)

• Messages can be verified as reaching their destination via Responses,

Event Messages, follow-up Inquiry transaction, Audit Logs or other means

• Message Store & Forward capabilities

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ

as a

Reactive System

MQ Technical Conference v2.0.1.8

Intro-Overview
This section illustrates the features/functions of IBM MQ that align with the

principles for Pipelines and the Reactive Manifesto.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

The Power of MQ:

Assured delivery

MQ replication

Async capability (non-blocking)

Scalability, Resiliency and Elasticity

Parallel processing

Runs on 80+ operating platforms

Next Slide: One MQ message broadcast to multiple processing locations
IBM: How to generate duplicate MQ messages from one message

IBM MQ as a Reactive System

IBM MQ: The Universal Messaging Backbone

http://www-01.ibm.com/support/docview.wss?uid=swg21574670

MQ Technical Conference v2.0.1.8

IBM MQ as a Reactive System

References:

T-Rob: IBM MQ JMS Msg ID NC

Note-Use DynamicQ or code MsgID/CorrelID

Capitalware: MQMR Overview

IBM: Pub/Sub scenarios for Clustered topics

IBM: Websphere MQ Pub/Sub

Also see MA0D

MQI

JMS

HTTP

MS WCF

WAS

IIB

Other

zOS-AOR1->AOR2

CICS-COBOL\C\ASM

CICS

Web Services

Windows Server

VB/VC++ / VBS/.NET

(Restructure CICS Txn flow?)

Request

1-M

Responses

(Aggregated

& processed

by receiving

application)

AIX - C/C++/Java/Perl

USS-DB2 zOS

Oracle MQ Gateway

MQ Telemetry (MQTT)

MQ File Transfer

MSMQ-Biztalk or WCF

Trigger z/OS MQ batch job

Or Distributed MQ script

Topic

Sources

MQ

Cloud

Remote

Devices/Sensors

IBM MQ: The Universal Messaging Backbone

The Power of MQ:

Source: Lee Wheaton@SHARE San Antonio 2016: Thoughts on MQ Architecture & Design

https://t-rob.net/2015/03/13/ibm-mq-jms-is-non-compliant/
http://www.capitalware.com/mqmr_overview.html
http://www-01.ibm.com/support/docview.wss?uid=swg27016146
ftp://public.dhe.ibm.com/software/integration/support/supportpacs/individual/ma0dmqv7.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg24000642
https://www-01.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/com.ibm.mq.dev.doc/q029770_.htm

MQ Technical Conference v2.0.1.8

IBM MQ: Responsive Features (1)

• Response times within the IBM MQ infrastructure are normally static if given

sufficient MQ resources and stable network bandwidth for peak traffic times.

• However, MQ response time will differ to a degree depending on the

message size. More network packets are needed as the message size

increases.
• Using IBM MQ’s message compression feature may improve network response time

• Dynamically increase/decrease broker/triggered tasks to optimally service the

MQ queues and reduce unnecessary resource consumption.

• Normally the bulk of an end users response time will be due to the amount of

work performed in the front-end and back-end applications (outside of MQ).

An account history lookup transaction will take longer to process than a

balance inquiry and require more network packets.

• See IBM MQ Family - Performance Reports

IBM MQ as a Reactive System

Front-End Clients

and/or

Application Server

IBM MQ

Infrastructure

Back-end Service

Provider

IBM MQTM or

Dynamic Task

Scheduler

(1-n tasks)

Network Network

http://www-01.ibm.com/support/docview.wss?uid=swg27007150#1

MQ Technical Conference v2.0.1.8

IBM MQ: Responsive Features (2)
• Overall end user response time (for the whole pipeline) can be monitored on the

client side.

• End to end MQ response times (within the MQ infrastructure) can be monitored

with vendor monitors or writing your own MQ client program to periodically send

roundtrip MQ messages and recording the elapsed time.

• MQ monitors can detect queue buildups, channel issues/latency, message aging

and do other MQ health checks as well as notify administrators of issues and/or

perform corrective actions.

• MQI calls receive back a condition code and a reason code that the developer can

use to determine the appropriate action to take next.

• MQ Client connection pooling via JMS or netscaler devices (sticky setting)

reduces new connection overhead which improves response time

• Network QOS rules can give priority to MQ traffic over the network

• MQMD priority can be set on MQ messages to give a specific message or a class

of messages processing priority (on MQGET’s) over other messages within the

same queue assuming Msgdlvsq is set to Priority.

• Performance gains can be achieved by using non-persistent messages instead of

persistent messages but developers need to mitigate the risk of lost messages.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ: Responsive Features (3)
Responsive Principle and Planned Latency (1)

Planned latency - dynamically controlled throttling of electronic traffic while meeting

SLA or other response time objectives.

Goals:

1) support end user think time to reduce errors

2) protect downstream components (like a dam on a lake)

3) smooth out peak and valley traffic patterns (i.e. steady state)

• minimizes maxed out components under normal conditions

• better component utilization due to a steady stream of traffic

• reduces resource contention/collisions

4) reduce costs by using commodity hardware

Caveat: Certain transactions involving stock trades, wire transfers, time-sensitive

or other content will need the lowest latency possible. (ie no user interaction)

MQ & CICS throttling for planned latency will be reviewed in later sections.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ: Responsive Features (4)
Responsive Principle and Planned Latency (2)

Paraphrased excerpts from “Response Time and Display Rate in Human

Performance with Computers “ by Ben Shneiderman:

• End user productivity increases as response time decreases

• Error rates increase with too short or too long a response time

• User think time is needed between commands to read/comprehend the response

content, make sound decisions based on the content, determine the next steps

and perform accurate data entry (typing) before submitting the next command.

• Working too quickly or user fatigue can result in stress/mistakes or jeopardize

human life (e.g. air traffic controllers or medical systems) Carpal Tunnel? Eyes?

• The amount and complexity of response content presented to the end user may

require additional think time.

• My question: will the end user read all of the response content or was system resources/

bandwidth wasted to generate content that won’t be read (and increasing response time)

• End users become accustomed to a response time and a +/- 50% variance in the

mean response time will not impact their performance. e.g. 1.5-2.5 sec range for 2”

Source: Ben Shneiderman@acm.org: Response Time & Display Rate in Human Performance with Computers

IBM MQ as a Reactive System

https://dl.acm.org/citation.cfm?id=2517&usg=AOvVaw0JVy2JVaJLi3KIr_tvtClB

MQ Technical Conference v2.0.1.8

IBM MQ: Responsive Features (5)
Responsive Principle and Planned Latency (3)

• The following articles discuss using Back Pressure as a form of planned

latency when the input rate is greater than the processing rate:

http://blog.clear-measure.com/backpressure-in-message-based-systems

https://dzone.com/articles/applying-back-pressure-when

IBM MQ as a Reactive System

http://blog.clear-measure.com/backpressure-in-message-based-systems
https://dzone.com/articles/applying-back-pressure-when

MQ Technical Conference v2.0.1.8

IBM MQ: Resilient Features (1)
The following major features or redundancies in IBM MQ allow it to stay responsive or

protect itself in the face of failure:

• IBM MQ runs 24x7 under virtualized hosts and z/OS Sysplex and in the Cloud

• Multi-Instance Queue Manager or Power HA

• IBM MQ Queue Manager Clustering

• MQ z/OS shared queues and shared channels

• Primary & Secondary log files and log triplewrite integrity

• IBM MQ support for XA external syncpoint coordination and 2 phased commit

• MQ Messages can be load balanced via network devices and/or software

• Sender Channel CONNAME and MQ Client Channel Table allow multiple

connection entries for auto-reconnects on network drops

• MQ and TCP KEEPALIVE setting (i.e. cleans up orphaned connections)

• Queue Manager Maxhands parameter controls the number of objects that a single

connection can have open at the same time

• Queue Manager Maxumsgs parameter limits the number of uncommitted

messages under any one sync point
• Qmgr Maxchl & Actchl parms control max number of current/active channels allowed

• MQ SVRCONN Channel Maxinst and Maxinstc sets the max client connections

allowed to start for this channel and the max connections allowed for a single client

• Reference: IBM Knowledge Center: Automatic client reconnection

IBM MQ as a Reactive System

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q017800_.htm

MQ Technical Conference v2.0.1.8

IBM MQ: Resilient Features (2)
• MQ Queue Maxdepth and Maxmsgl help protect the queue manager or meet

certain application requirements (e.g. mitigate application buffer overflow)

• MQ OAM (and/or IPSEC) policies allow in only channel traffic from locations

defined to the OAM ruleset.

• IBM MQ has a transmit queue to temporarily house messages in transit that are

undeliverable due to a network/other outage. Once the outage is resolved, the

housed messages continue their trip on to their destination. i.e. Store & Forward

• IBM MQ has a Dead Letter Queue to temporarily or permanently house

undeliverable messages. A DLQ handler can be run to forward DLQ messages.

• IBM Tivoli or some 3rd party MQ Monitoring tools can monitor MQ’s health and take

action as needed

e.g. Turn on a trigger flag for a local queue at a specified time or event

Replay messages in a dead letter queue to complete their processing

Start/stop channels at a specified time or event

Trigger predefined remedial or administrative scripts at a specified time/event

Alert administrators to MQ health anomalies

• IBM MQ can pass back to it’s clients a reason code which the client can react to

• IBM MQ has a number of exit points that can be used for customized solutions

• Other features not listed here

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ: Elastic Features (1)
• Some companies are processing billions of MQ messages each day.

• IBM MQ as a system can scale horizontally. MQ programming has multi-threading

capabilities and multicore possibilities to scale vertically to a degree

• MQ in the Cloud is capable of dynamically adding/removing MQ resources.

Outside the Cloud, new MQ resources normally need to be preplanned and

budgeted. Then MQ queue managers can be built as spares or held in reserve

until varied online to add capacity. When traffic goes down, the queue manager is

varied offline. (Check your MQ licensing). Note-test queue managers could be

refitted to service production using automation scripts.

Caveat: If you have purchased your own hardware, software and licensing to add

MQ capacity, it could be argued to run at your full hardware/software

capacity all the time to be cost effective and forgo auto resource manage-

ment overhead (eg yo-yo effect) and risk (ie resource may not come up)

• Capacity planning is critical to supporting MQ elasticity and minimizing

infrastructure costs.

• MQ clustering or MQ parallel sysplex allows the service to continue while you take

queue managers offline for maintenance/triage or bring online to add capacity.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ: Elastic Features (2)
• The IBM MQ pub/sub feature can be used to broadcast Events to multiple

components within a pipeline for service orchestration or to have them act in concert

• MQ throughput can be scaled dynamically for elasticity by controlling the number

of servicing programs triggered for each queue. The number of queue servicing

programs are increased (up to a set limit) as the queue depth increases and go

down as the queue is drained. The CICS AOR is given as much MQ traffic as it

can handle. Ideally, multiple AOR’s are used with CICSPlex WLM and TCLASS

setting. More details on dynamic throttling are provided later in this document.

• Some ways for MQ to create backpressure on the front-end (FE)

A) Using MQ dynamic triggering as noted above will result in the backend not

being overrun and still allow the front-end to keep sending messages.

However, in peak times, it is possible that queue depths will grow resulting in

increasing response times on the front-end until MQGet with wait times out.

B) A (homegrown) program detects the downstream is being overrun (based on

qdepths) and sends an Event msg to front-end program to throttle their traffic

C) A (homegrown) monitor detects the downstream is being overrun (based on

qdepths) & issues commands to take offline 1 or more MQ servers in the pool.

While this option will work, it’s not recommended as it creates havoc on FE.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ: Elastic Features (3)
• With it’s queues, MQ can buffer the backend application from sudden surges

in frontend traffic, help protect it’s backend applications from being overrun

with transactions and turn backend traffic patterns from peaks and valleys

into hills and dales.

• IBM MQ messages can be load balanced. Some SLB switches can detect

servers under stress and reroute new traffic to other servers in the team.

• The IBM MQ system stays responsive under varying workload

• IBM MQ can run on commodity hardware

• IBM MQ provides some relevant live performance measures like msgage,

curdepth, lgetdate, lgettime, lputdate, lputtime, qtime, nettime, lstmsgda,

lstmsgti, chstada, chstati, curseqno, status, msgs, etc.

• However, MQ monitors can also provide relevant live MQ performance

measures as noted above and capture this information into histograms

which can be leveraged for problem resolution and as input for capacity

planning forecasting.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ: Message Driven Features (1)
• IBM MQ is Message-Oriented Middleware.

Per Gartner, in 2015, IBM had a 75% market share in Message Oriented Middleware

• Placing a MQ queue manager between two applications allows their

communications to be asynchronous and loosely coupled.

• The location of MQ resources is normally transparent to the user or app program.

• MQI calls to a queue manager are synchronous to facilitate transaction/data

integrity and provide status codes to the client, but MQ developers have ways to

structure their MQI calls to be non-blocking as noted later in this document.

• An MQ message can contain an Event

• MQ Messages can be load balanced

• IBM MQ can reroute message traffic or create multiple pipeline paths to service a

message. e.g. the messages going to a backend server having problems can be

redirected to another backend server in good standing.

• IBM MQ has publish/subscribe messaging that decouples the provider from the

consumers of that information. Pub/Sub can be used to replicate messages.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ: Message Driven Features (2)
• IBM & 3rd party MQ Monitors can do ongoing MQ healthchecks of your whole MQ

infrastructure and admins can be notified of any failures/anomalies. Some MQ

monitors have the ability to take corrective action for certain problems.

• IBM MQ returns back a condition and reason code after each call, and report

messages if requested, to notify the requestor/developer on the status of their

request.

• Failures that IBM MQ detects can show up in MQ event queues and/or

syslog/event logs where automation monitoring programs (e.g. Big Brother,

OPS/MVS, SNMP) can parse for MQ error eyecatchers and take action or

notify MQ Administrators and/or Operations personnel.

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ: Guaranteed Delivery Features
Guaranteed Delivery should be an ‘ideal’ goal to always strive for.

• However, Change is ongoing for software, hardware and educational

development as well as maintaining the compatibilities that go with it.

• Each vendor in a pipeline can only warrant their products and not end-to-end

guaranteed delivery which they don’t have total control over. Vendors also

can’t control how their products are being used (i.e. people factor).

• Companies around the world have Help Desks and triage teams for a reason.

• ‘Assured Delivery’ then is the highest level of reliable messaging that can be

achieved within the constraints noted above.

• IBM MQ meets the attributes they control that are listed on the Guaranteed

Delivery Principle (2) slide.

Per Leif Davidsen, “Half of the value of IBM MQ is not just the assured once

and once only delivery but that your business has the visibility that the

message was delivery successfully or not.”

Source: Leif Davidsen@wordpress.com: Power is nothing without control – IBM MQ V9.0.1

Reference: Leif Davidsen: What is IBM MQ and why do you need it?

IBM MQ as a Reactive System

https://leifdavidsen.wordpress.com/tag/ibm/
https://leifdavidsen.wordpress.com/2016/01/05/a-message-awakens-what-is-ibm-mq-and-why-do-you-need-it/

MQ Technical Conference v2.0.1.8

IBM MQ

Reactive Programming

MQ Technical Conference v2.0.1.8

IBM MQ Reactive Programming (1)
Reactive Programming is an asynchronous non-blocking development

model using data streams, a task-based concurrency model and employs

non-blocking I/O. Data stream content can contain events, server requests,

messaging, and even values. Advanced reactive programming may leverage

multicore programming and parallelism.

• Reactive programming is event-driven. Reactive systems are message-driven.

• Systems and application RP bridge the gaps/deficiencies in reactive systems and

allow coding of custom reactive solutions especially events.

• RP can be used to dynamically apply back pressure when a pipeline is maxed out

• RP “supports decomposing the problem into multiple discrete steps where each

can be executed in an asynchronous and non-blocking fashion, and then be

composed to produce a workflow—possibly unbounded in its inputs or outputs.”

• “The primary benefits of reactive programming are: increased utilization of

computing resources on multicore and multi-CPU hardware; and increased

performance by reducing serialization points.”

• “A secondary benefit is one of developer productivity as…it typically removes the

need for explicit coordination between active components.”

IBM MQ as a Reactive System

Source: Bonér & Klang@oreilly.com: Reactive programming vs. Reactive systems

https://www.oreilly.com/ideas/reactive-programming-vs-reactive-systems

MQ Technical Conference v2.0.1.8

IBM MQ Reactive Programming (2)
IBM MQ is asynchronous by nature. However, MQ developers need to

code their MQ calls so they are non-blocking where feasible.
• Programs needing to serialize their code logic for integrity or having certain

dependencies may still need to be synchronous and of a blocking nature.

• Ideally, MQ developers can decompose their program logic into multiple discrete

units of work (UOW) so each UOW can be isolated and sent as a fire & forget

message, in a non-blocking manner, and processed downstream concurrently/in

parallel with the other UOWs.
OR

Using Pub/Sub, one message is replicated to multiple processing destinations

so that each one process an isolated & discrete unit of work (UOW) in parallel

• If a response message is needed, each UOW can use MQMD ReplyToQ

and correlid/msgid to (asynchronously) put the message back to the

sender response queue where the sender application can reassemble the

responses as a coherent whole. Note-Other solutions may be possible.

• MQPUT1 is closest to async non-blocking mode and the Reactive Manifesto.

• Do MQPUT, do other non-MQ work then do MQGET at end (Not quite compliant)

• Do MQPUT1 in one thread/component and MQGET response in different thread

• Use Event and Report Messages in lieu of Response messages

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ Reactive Programming (3)
Throttling MQ Traffic and still meet SLAs or Other Time Objectives
Presented below are several examples on how to throttle MQ traffic. The goal is to

1) achieve elasticity, 2) cap the number of concurrent queue servicing programs to

protect the servicing provider (e.g. CICS AOR) while 3) keeping the queue depth at a

minimum and still meet SLAs. CICS TCLASS can work in concert with MQ cap to

smooth out MQ traffic patterns. Note-MQ Process Def can contain the capping info.

• Local Queue is defined with Trigger First. Avoid Trigger Every as generates much

more trigger messages on the InitQ and CKTI starts a CICS task for each trigger.

• The first triggered/master program does a MQINQ on it’s qdepth and, based on a

homegrown algorithm, kicks off as many servicing programs as needed or until it

hits the Process cap. The master program periodically monitors the qdepth and

ends when the queue is drained. Each servicing program continually processes

messages off their assigned queue and end their program when they get a 2033

AND/OR

• A standalone MQ monitoring program, like CKTI, can periodically MQINQ the

qdepths of the local queues in its purview and kick off as many servicing programs

as needed or until the Process cap is reached. Each queue’s Process object

definitions can be pre-loaded at program start-up. Avoid 1 CICS task for each msg

• Create a hybrid solution from the previous two solutions noted above

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ Reactive Programming (4)
IBM MQ supports Events, Event Queues and Report Messages
• IBM MQ has queue manager, performance, channel, command and configuration

event queues containing informational, warnings or error events related to these

entities. e.g. channel starting up, queue full.
• Events are standard IBM MQ messages containing a message descriptor and message

data. Developers can create their own events and send them off as MQ messages.

Reference: IBM Knowledge Center: Sample program to monitor instrumentation events

• MQ developers can request or generate MQ report messages that inform the

calling program on the status of their MQ request. The calling program can then

determine if any next steps are needed or provide this feedback to their end user.

These report messages can be especially useful for fire and forget mode.
1) The queue manager generates a Confirm on Arrival (COA) and Confirm on Delivery(COD)

2) The developer generates a positive action notification (PAN) or negative action notification

(NAN) report message to denote if the request was successfully processed or not.

Reference: IBM Knowledge Center: Instrumentation Events

Developers can issue a PCF call (or the much less powerful MQINQ call) to

query the attributes and runtime status of MQ objects and act on the results.
e.g. Current queue depth, Queue open for Input Count, Queue open for Output count, process

attributes, Queue Manager Name, DLQ name, etc. PCF calls are best for Reactive Programming.

IBM MQ as a Reactive System

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.mon.doc/q036590_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.mon.doc/q036160_.html

MQ Technical Conference v2.0.1.8

IBM MQ Reactive Programming (5)
• After each MQ call, the developer’s program checks a MQ condition code

and reason code to determine if there were any problems & reacts to them

promptly.

• MQ systems and utility programs also provide error codes.

• MQ developer’s must avoid coding affinities to use specific servers or

queue managers and their program code should be able to run concurrently

on multiple queue managers/servers within a MQ cluster or Sysplex.

• Avoid hard coded MQ parms that take control away from MQ Administrators

• Specify fail_if_quiescing on your MQ calls. Don’t hold QManagers hostage.

• Persist Messages and do MQGET under syncpoint control for assured

delivery

• The developer is responsible for isolating/compartmentalizing program code

• All programs in a pipeline need to avoid creating program loops, resource

contention or other bottlenecks that impact the whole pipeline

• Developers should leverage previously successful messaging patterns for

new business solutions and for code consistency

IBM MQ as a Reactive System

MQ Technical Conference v2.0.1.8

IBM MQ Reactive Programming (6)
Reference: Kevin Webber@redelastic.com: What is Reactive Programming?

Clement Escoffier@dzone.com: 5 Things to Know About Reactive Programming
Andre Staltz@github.com: The introduction to Reactive Programming you've been missing

Konrad Malawski@oreilly.com: Why Reactive? (free ebook)

IBM MQ as a Reactive System

https://blog.redelastic.com/what-is-reactive-programming-bc9fa7f4a7fc
https://dzone.com/articles/5-things-to-know-about-reactive-programming
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://www.oreilly.com/programming/free/why-reactive.csp?intcmp=il-webops-free-product-na_new_site_reactive_programming_vs_reactive_systems_text_cta

MQ Technical Conference v2.0.1.8

In this session, we first reviewed:

Transaction & Software Pipeline Principles

The Reactive Manifesto

Then reviewed:

IBM MQ as a Reactive System

IBM MQ Reactive Programming

Hopefully, you agree that IBM MQ is a fully Reactive System

and then some...

Summary

MQ Technical Conference v2.0.1.8

Questions & Answers

MQ Technical Conference v2.0.1.8

Thank you for attending this session!

IBM MQ as a Reactive System

