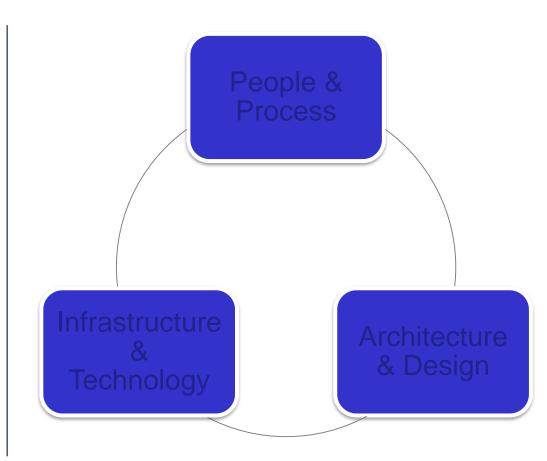
MQ and IIB Deployment Patterns using Docker on IBM Cloud Private

Sandeep Chellingi

Head of Hybrid Cloud Integration,


Prolifics

Agenda

- Integration Modernization
- ☐ Agile Integration Architecture
- SOA vs Micro Services
- Evolution of Agile Architecture
- Containers
- ☐ High Availability Scenarios
- IBM Cloud Private

Integration Modernization

Modernization will impact more than just your software

Agile Integration Architecture

Agile Integration Architecture drives the change Fine grained development & simplify mgmt

Decentralized Ownership Accelerate agility & innovation

Cloud native Provide resiliency

infrastructure

and scalability

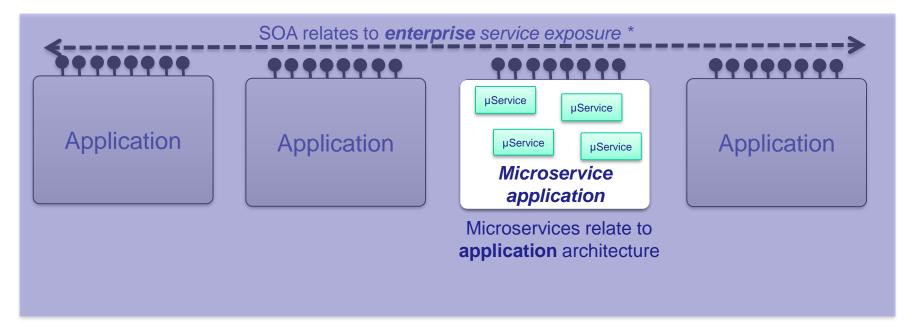
Typical benefits sought from a move to microservices

Agility

Faster iteration cycles, bounded contexts, autonomous teams

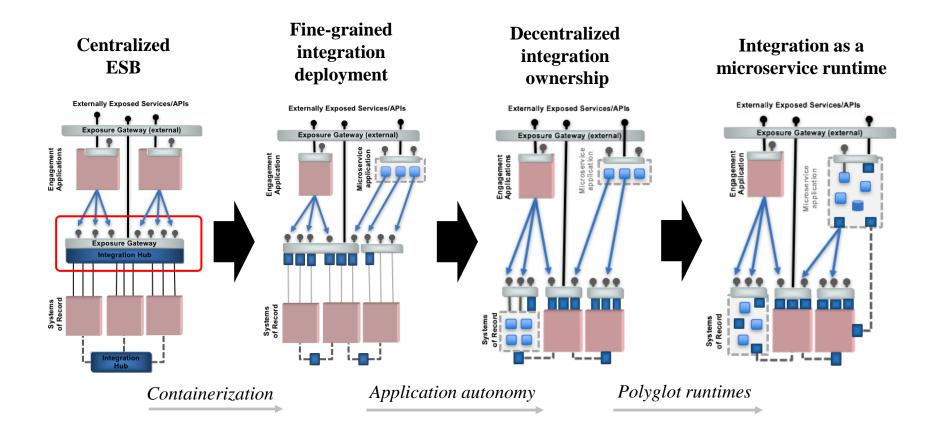
Scalability

Elastic scalability, workload orchestration, cloud infrastructure


Resilience

Minimized
dependencies, discrete
failover,
fail fast, start fast

Difference between SOA and Micro services


Service oriented architecture (SOA) and microservices architecture relate to different scopes

They are complementary, rather than competing

Webinar based on above paper (55 mins) http://ibm.biz/MicroservicesVsSoaFullWebinar

Evolution to agile integration

Benefits of a container-based approach

Build Agility

- Higher build velocity
- Faster maintenance cycles
- Consistency across environments
- Independent component deployment
- Simplified testing of isolated components

Fine-grained Resilience

- Safe independent deployment, removing risk of destabilizing existing components.
- Disposable components enabling rapid start/stop for simple HA and scaling.
- Fit for purpose discrete topologies

Infrastructure Optimization

- Maximized component/resource density
- Lower overheads than virtual machine isolation
- Dynamic and elastic provisioning of resources (CPU, memory, persistent volumes)
- Usage based licensing models

Operational Consistency

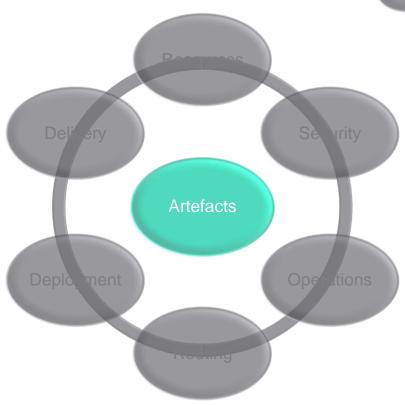
- Standardized infrastructure platform skillset across products
- Platform based load balancing
- Platform based high availability
- Platform based scaling via policy
- Platform based logging/monitoring

Component Portability

- Containers can be re-distributed dynamically across nodes within a given cloud
- Images can be built and run on any cloud
- Focus on open containerisation standards such as Docker and Kubernetes
- Enables multi-cloud scenarios

Scalability & Continuous Availability

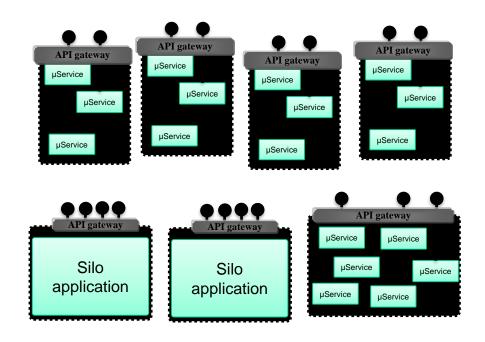
- Fine-grained dynamic scaling of individual functionality
- Implicit high availability based on replication policy and built in reinstatement
- Provided consistently across all types of components


Operational consistency of container based solutions

Runtime specific

Provided by platform

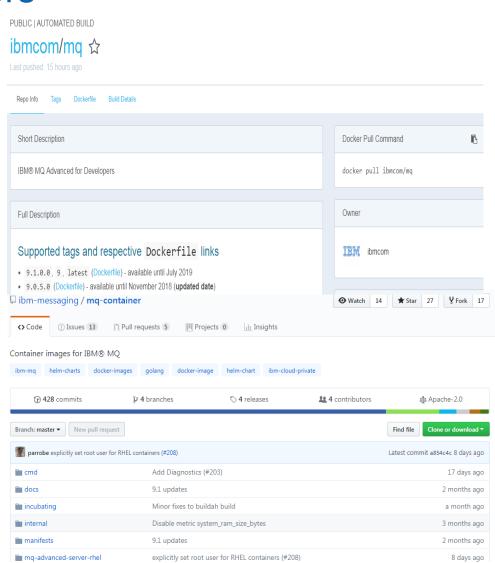
Traditional infrastructure (Pets)


Cloud native infrastructure (Cattle)

The scope of Integration Modernization

		Replatform Operational consistency • Platform based HA • Platform based logging • Usage licensing	Repackage Agility through independence Granular components Increased isolation Independent release cycles	Refactor Embrace cloud-native Image based deploy Automated CI/CD Elastic scalability
rnization	Application Integration	Containerize application integration infrastructure	Fine-grained integration deployment	Optimize integration deployment for cloud platform
Integration Modernization	Messaging & Events	Containerize messaging provider infrastructure	Fine-grained queue deployment	Optimize messaging for cloud platform
Integration	API Management	Containerize API gateway and management infrastructure	Align API component placement	Consumer aligned API exposure
Ι	DevOps		Increasingly automated	
(Ownership		Increasingly decentralized	
	Traditional			Cloud-native

Boundaries make complex environments manageable


Managed API gateways define and enforce application boundaries

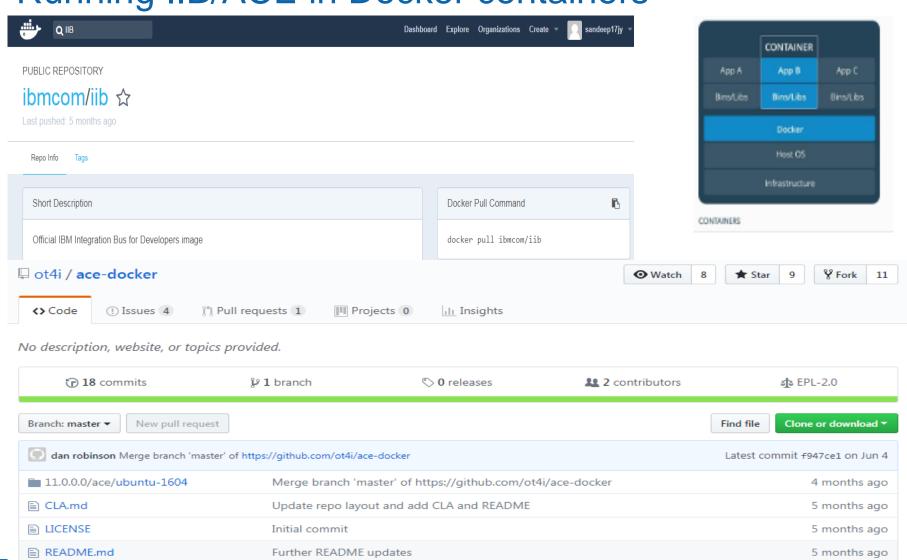
Running MQ in Containers

- MQ has been supporting Docker containers since 2015 with images on Docker Hub and Docker Store and sample code on Github
- Recently it has been demonstrating how to get most of docker containers and kubernetes providers like Redhat open shift, Pivotal container service
- MQ Advanced is available as a fully supported product with IBM Cloud Private, a Kubernetesbased solution from IBM

MQ container orchestration support

	IBM Cloud Public	IBM Cloud Private		Other Container Services (Docker Hub/Store)	Other Container Orchestration services (e.g.OpenShift)	Other	
Component/arch	x86_64	x86_64	ppc64le (POWER)	s390x (z/Linux)	x86_64	x86_64	*
MQ Advanced Server Production	•	*	A	A	•	A	A
Client (dev & prod)	A	A	A	A	A	A	A
MFT & AMS & MQTT	A	A	A	A	A	A	A
SDK	A	A	A	A	•	A	A
MQ Explorer	A	A	A	A	•	A	A
Salesforce Bridge	A	A	A	A	•	A	A
Blockchain bridge	*	×	×	*	×	*	×
RDQM	*	*	*	*	×	*	*
MQ IPT	*	*	*	*	*	*	*

MQ supported with image and sample available Supported, Image and Helm chart available


MQ supported with sample Supported, and you need to build your own image (samples/blog available)

MQsupported with no sample Supported, and you need to build your ownimage.

Not supported

Running IIB/ACE in Docker containers

Helm Charts

IIB Helm Charts

IBM INTEGRATION BUS

IBM® Integration Bus is a market-leading lightweight way for systems and applications to communicate wit business value, reduce IT complexity and save money choices, skills and interfaces to optimize the value of

Introduction

This chart deploys a single IBM Integration Bus for Developers integrat IBM Cloud Private or other Kubernetes environment.

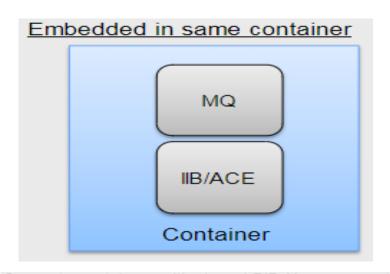
Installing the Chart

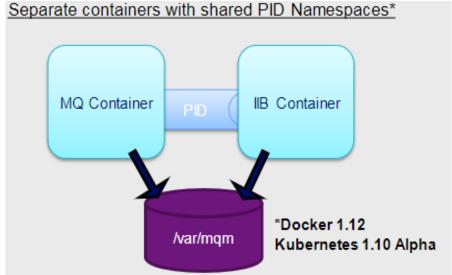
To install the chart with the release name foo:

helm install --name foo ibm-integration-bus-dev --set license-accept

Configuration

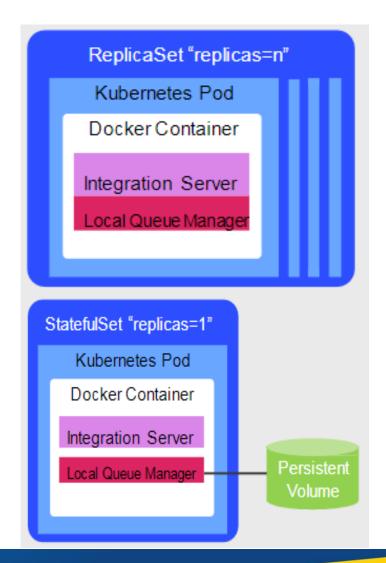
The following table lists the configurable parameters of the 1bn-integration-bus-dev chart and their default values.

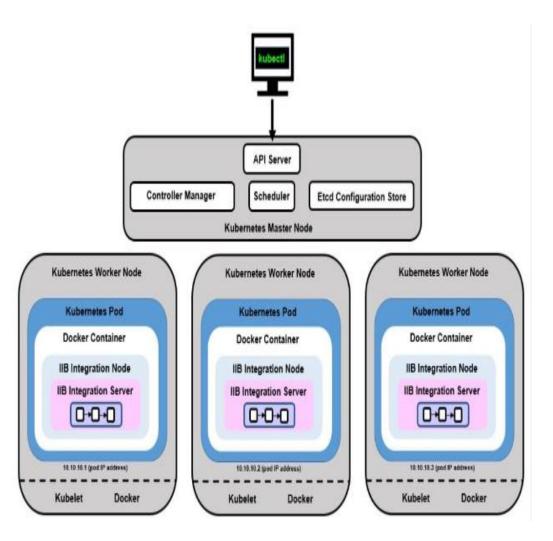

Parameter	Description	Default
license	Set to accept to accept the terms of the IBM license	Not accepted
image.repository	Image full name including repository	ibmcom/iib
image.tag	Image tag	10.0.0.10
image.pullPolicy	Image pull policy	IfNotPresent
image.pullSecret	Image pull secret, if you are using a private Docker registry	nil
service.name	Name of the Kubernetes service to create	qmgr
service.type	Kubernetes service type exposing ports, e.g. NodePort	NodePort
resources.limits.cpu	Kubernetes CPU limit for the Queue Manager container	2
resources.limits.memory	Kubernetes memory limit for the Queue Manager container	2048M1
resources.requests.cpu	Kubernetes CPU request for the Queue Manager container	1
resources.requests.memory	Kubernetes memory request for the Queue Manager container	512M1
odenane	IBM Integration Bus integration node name	IIB_NODE
ervername	IBM Integration Bus integration node name	IIB SERVER


How and why does IIB/ACE use MQ?

- As an asynchronous messaging provider
- By certain nodes to maintain state (Collector, Resync, etc)
- As a co-coordinator for global (two phase commit) transactions

Running MQ and IIB/ACE in containers


- Use cases where IIB/ACE can use Client bindings connections then run MQ and IIB/ACE in separate containers.
- Use cases where IIB/ACE requires local (server) bindings connections can be deployed in different options
 - ► Embedded in Same Container
 - Separate Container with same PIS Namespace


Running MQ and IIB/ACE in same containers

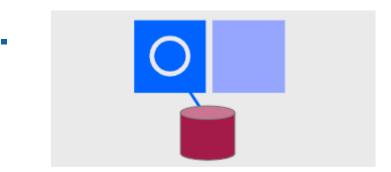
- replicas =n
 - no persistent volume claim
 - HA by replication (continuous availability)
 - ► Elastic horizontally scalability
 - ▶ Non-durable use of EDA*nodes
 - No 2 Phase Commit.
- replicas =1
 - persistent volume claim
 - ► HA by reinstatement
 - Manual horizontal scalability
 - Durable use of EDA*nodes
 - ▶ 2 Phase Commit

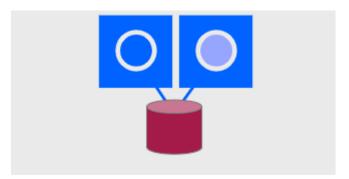
IIB running in Kubernetes

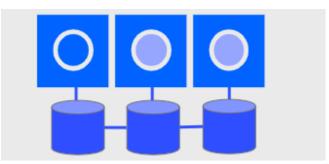
- The IBM Cloud Container Service provides a Kubernetes-based public cloud solution
- IBM Cloud Private provides a Kubernetes-based private cloud solution for running in your own datacenter

MQ HA Availability on Docker/Kubernetes

Single resilient queue manager

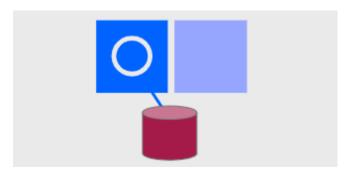

- Cloud manages failover to somewhere with spare capacity
- Networked storage (block or filesystem), managed by separate subsystem

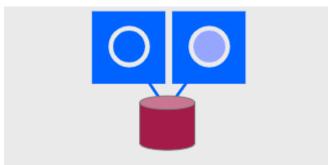

MQ Multi-Instance Queue Manager


- Active Standby pair ,MQ Manages Failover
- Shared Network Storage managed by different sub System

Replicated data queue manager

- "Shared Nothing" approach ,MQ manages failover
- ► Local block storage,




synchronously replicated by MQ

Not supported on Containers

IIB/ACE HA Availability on Cloud

- Single resilient Integration Node (v10) or Integration Server (v11)
 - Cloud manages fail-over to somewhere with spare capacity
 - Networked storage (if needed) managed by separate subsystem
- Multi-instance Integration Node (v10)
 - Requires local MQ
 - MQ manages fail-over
 - ► ACE v11 not supported (yet)
 - Networked storage (filesystem), managed by separate subsystem

IBM Cloud Private Solution

IBM Middleware & Open Source - e.g. Data, Analytics and Developer Services

Cloud-enabled middleware, application runtimes, messaging, databases & analytics to optimize current

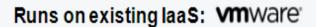
investments and rapidly innovate

Core Operational Services

To simplify Operations Management, Security, DevOps, and hybrid integration

Kubernetes-based Container Platform

Industry leading container orchestration platform


Cloud Foundry

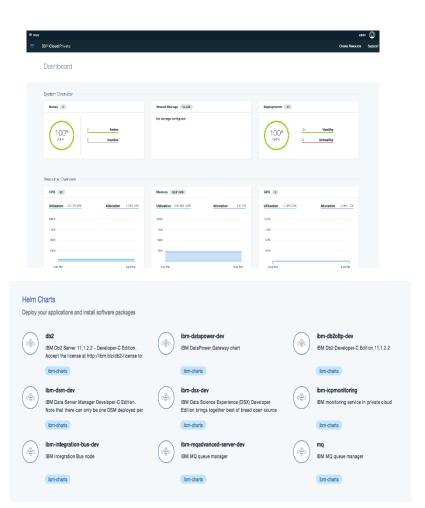
For prescribed application development & deployment

Terraform (CAM)

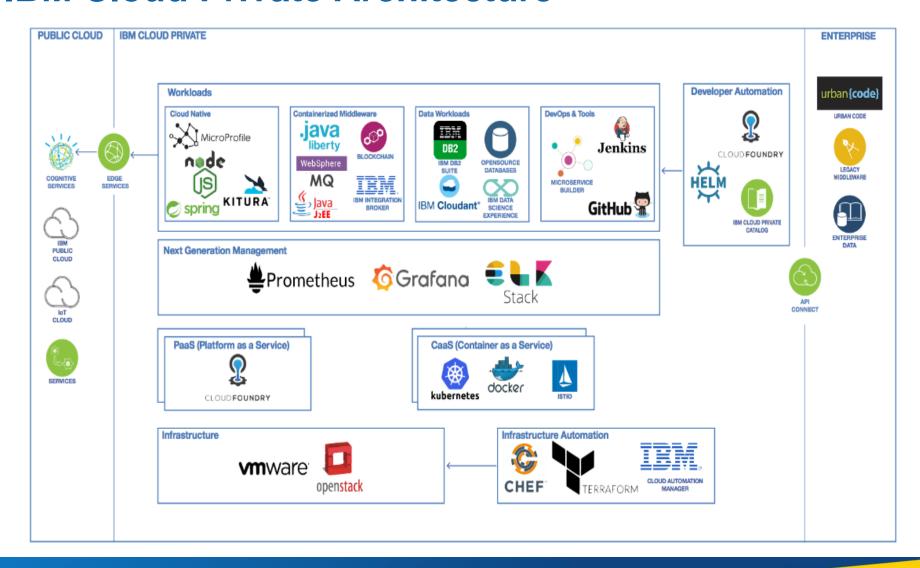
Infrastructure as Code for multi-cloud provisioning to public and on-prem private clouds

System Z

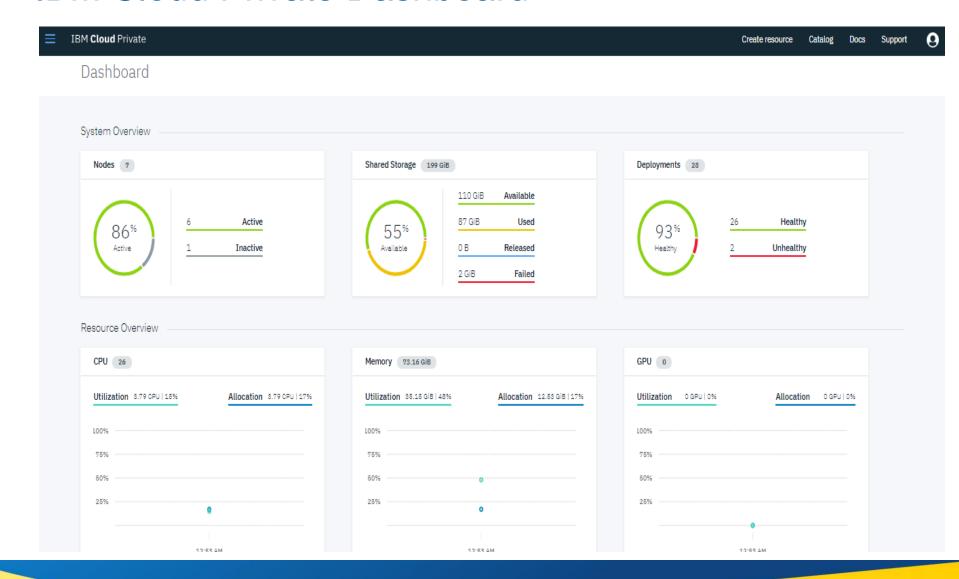
Dell, Cisco, NetApp, Lenovo, ...

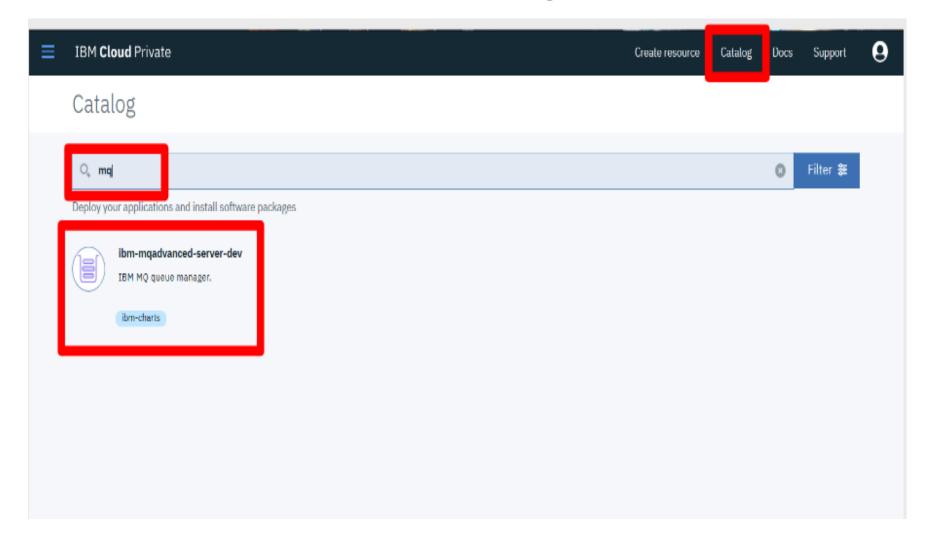

IBM Cloud Private Overview

A customer-managed Private Cloud software solution based on Kubernetes, Docker and Cloud Foundry technology that runs on customer-provided infrastructure (or in Public Cloud IAAS)


A platform to run containerized versions of IBM Software such as Datapower, IIB, MQ, DB2, Cloudant, Data Science Experience (Apache Spark), Blockchain

A platform to build Cloud Native, Stateless, 12 Factor apps including powerful developer tools to jump-start projects


A platform to run Modernized and Containerized Legacy Applications including tools and services to help transform code.


IBM Cloud Private Architecture

IBM Cloud Private Dashboard

IBM Cloud Private Helm Catalog

Questions & Answers

