
MQ Technical Conference v2.0.1.8

MQ, IIB, Docker, Kubernetes
& IBM Cloud

MQ in Containers

MQ Technical Conference v2.0.1.8
2

MQ in the Cloud Content

❖ Containers

❖ Container Software Stack

❖ Open Systems Interconnection (OSI) Layers

❖ Differing Perspectives

❖ Challenges of porting networks into Containers

❖ Summary

MQ Technical Conference v2.0.1.8
3

MQ in the Cloud - Containers

Containers

The new Application Runtime Environment

MQ Technical Conference v2.0.1.8
4

Containers

❖ What are Containers?
They are a type of Virtual Machine.

They are very lightweight; more like a “Virtual Thread”.

They all are based on Linux.

❖ Where did Containers Come From?
First released in 2013.

Adopted by Amazon in 2014.

2016 Contributors:
 Docker, Cisco, Google, Huawei, IBM, Microsoft, Red Hat.

❖ Why are Containers Important?
Standardized configuration allows “run anywhere” behavior.

Enable massive horizontal scaling.

Foundational technology for Amazon, Microsoft, & IBM Clouds.

MQ Technical Conference v2.0.1.8
5

How Containers are Built

❖ Containers are defined by a “Dockerfile”
The Dockerfile is a build script

The Dockerfile defines a container as a series of layers

 The Initial layer is required to be a Linux image

 The second layer could be, for example, the MQ binaries

Containers have a defined command/script to be executed at startup

❖ Two Methods for adding a Queue Manager to a Container
Add a named Queue Manager and it’s MQ objects as a layer

 But every instance of the container would contain the same Qmgr!

Define a new Queue Manger in the startup script

 But how to define communications to and from the Qmgr?

To cover this dilemma in more depth, additional background is needed

MQ Technical Conference v2.0.1.8
6

MQ in the Cloud – Cloud Software Stack

Container Software Stack

It’s a whole new ballgame

MQ Technical Conference v2.0.1.8
7

Cloud Software Container Stack
➢ Remote

✓ Facilities

➢ Bare Metal
✓ + Network

✓ + Storage

✓ + Compute

➢ IaaS
✓ + OS

➢ PaaS
✓ + DB & Mgmt

✓ + Middleware

✓ + App Hosting

➢ SaaS
✓ + Application

MQ Technical Conference v2.0.1.8
8

Container Stack

❖ Docker
The engine that runs a container (a new kind of hypervisor)

Dockerfile defines which Ports of the Container are exposed

Provides communication support within a server

❖ Kubernetes
Kubernetes is a Container manager

Monitors health and restarts containers

Provides dynamic horizontal scaling of containers

Provides communications support across servers

❖ Helm
Helm is a Kubernetes package manager

❖ Istio
A Services Mesh

Provides communications support through a Control Plane

MQ Technical Conference v2.0.1.8
9

Docker

➢ Developed by Solomon

Hykes

➢ Released in 2013

➢ Uses Linux features
❑ cgroups

❑ Namespaces

❑ “Union” file system

➢ Union file system

➢ Open Source
❑ Open Container Initiative

❑ Cloud Native Computing

Foundation

MQ Technical Conference v2.0.1.8

N

O

T

E

S

10

Docker Notes - I

❖ Conceptual Framework

❑ Software executes in “Containers”

❑ Containers are based upon native Linux capabilities

❑ A Container is a single isolated & encapsulated thread

✓ Everything necessary to execute (i.e. libraries)

❑ A Container is a run-time instance of an “Image”

✓ Images stored in Docker registries

❖ Containers are managed by a daemon

❑ dockerd (Docker container daemon)

❑ containerd (Open Source container daemon)

❑ Container isolated from all other non-kernel processes

❑ Scope of daemon is only server wide

MQ Technical Conference v2.0.1.8

N

O

T

E

S

11

Docker Notes - II

❖ Virtual Machines versus Containers

❑ Virtual Machines

✓ Implement a “virtual” Operating System

✓ General purpose

✓ Multi-threaded

✓ Shared resources for multiple processes

✓ Slow to start up and shut down

❑ Containers

✓ Implement a “virtual” Thread

✓ Execute a single program

✓ Single-threaded (Single Linux thread)

✓ Resources dedicated to the software image

✓ Extremely fast to start up and shut down

MQ Technical Conference v2.0.1.8
12

Kubernetes

➢ Developed by Google

➢ Released in 2015

➢ Turned over to the

Cloud Native

Computing Foundation

(CNCF)

➢ ”Clustering for

Containers”

➢ Docker Swarm and

Apache Mesos are

competing products

MQ Technical Conference v2.0.1.8

N

O

T

E

S

13

Kubernetes Notes

❖ Container Orchestration

❑ Cluster Management

❑ Container Scheduling

❑ Service Discovery

❑ Dynamic Scaling (Managing Container instances)

❑ Health Maintenance (Health Checking & Repair)

❖ Single Docker instance only spans one server

❖ Kubernetes deploys “Pods” of Containers

❑ Pods contain one or more containers

❑ Pod instances deployed across multiple servers

❑ Number of Pod instances monitored and managed

MQ Technical Conference v2.0.1.8

N

O

T

E

S

14

Kubernetes Architecture

➢ Kubernetes Cluster

defined by Master

node.

➢ Pods distributed

across Worker nodes.

➢ Client control

interface.

➢ Defined Pods and

Services.

MQ Technical Conference v2.0.1.8
15

Helm

➢ Developed at Deis

➢ Released in 2015

➢ ”Packaging for

Kubernetes”

➢ Turned over to the

Cloud Native

Computing Foundation

(CNCF)

➢ Initial development

started with a short Deis

hackathon

MQ Technical Conference v2.0.1.8

N

O

T

E

S

16

Helm Notes

❖ Package Manager for Kubernetes

❑ Provides “Helm” Charts

✓ A Helm Chart is a zipped directory (chart name = directory)

✓ Package multiple Kubernetes components into one chart
o Pods

o Services

o Ingress

o Volumes

✓ Separate Manifest data from Environment data

✓ Charts can be stored and versioned in a repository

✓ A “Release” is an instance of a Chart

❑ Simplifies managing deployments

✓ Combines multiple Kubernetes actions into a single chart

✓ Creates a single reusable set of deployed objects (manifest)

✓ Isolates Environment settings for simplified deployment migration

(e.g. from Development to Production)

MQ Technical Conference v2.0.1.8

N

O

T

E

S

17

Helm Directory Structure

❖ Helm Chart Directory

❑ Chart.yaml (Chart metadata; YAML format)

❑ LICENSE (L) - optional

❑ README.md (Text file formatted using Markdown) - optional

❑ templates (Resource manifests; Directory)

o NOTES.txt (Text file)

o _helpers.tpl (Text file)

o configmap.yaml (YAML file)

o deployment.yaml (YAML file)

o pvc.yaml (YAML file)

o secrets.yaml (YAML file)

o svc.yaml (YAML file)

❑ values.yaml (Release Keys and Values; YAML format)

MQ Technical Conference v2.0.1.8

N

O

T

E

S

18

Helm Architecture

MQ Technical Conference v2.0.1.8
19

Istio

➢ Developed by IBM,

Google, & Lyft

➢ Released in 2017

➢ Service Discovery

(“Dynamic DNS”) for

the Cloud

➢ Consolidation of the

Amalgam8 (IBM),

Service Control

(Google), and Envoy

Proxy (Lyft) projects

MQ Technical Conference v2.0.1.8

N

O

T

E

S

20

Istio Notes

❖ The Problem:

❑ How can the location of a Service be determined?

❖ The Answer:

❑ A Service Mesh

✓ Envoy Proxies are added as “sidecars” to Docker containers

✓ These sidecars are deployed as part of the Kubernetes Pod

✓ TCP requests routed through the Proxies.

✓ Proxies announce their existence to the “Control Plane”

o This allows them to receive inbound traffic

✓ Proxies route their requests through the “Control Plane”

o This allows them to receive inbound traffic

✓ Control Plane may also enforce Policies (Security, Traffic, etc.)

MQ Technical Conference v2.0.1.8

N

O

T

E

S

21

Istio Architecture

MQ Technical Conference v2.0.1.8
22

MQ in the Cloud - Containers

Open Systems

Interconnection Layers

Decomposing the Software Stack

MQ Technical Conference v2.0.1.8
23

Open Systems Interconnection Layers

❖Application perspective

is OSI Layer 7

❖Apps are all about

“function”

❖MQ is an OSI Layers 4 &

5 product

❖Reasoning that what is

“good” for Layer 7 will

be good for other layers

IS NOT VALID!

MQ Technical Conference v2.0.1.8
24

MQ in the Cloud - Containers

Differing Perspectives

What you don’t know seems simple

MQ Technical Conference v2.0.1.8
25

Application View of MQ

MQ Technical Conference v2.0.1.8
26

MQ View of Applications

MQ Technical Conference v2.0.1.8
27

Network View of Servers

MQ Technical Conference v2.0.1.8
28

Perspectives - I

❖ Application Developers

Containers provide a standardized runtime environment (through Dockerfiles)

 Every Container is, by definition, configured identically

Containers provide horizontal scaling (through Kubernetes)

Containers provide HA (through Kubernetes)

 Influenced by Web Front-ends using clustered horizontal scaling

❖ Enterprise Architects

Back-end software may also leverage horizontal scaling

Read-only resources may be horizontally scaled (multiple instances)

Single-instance resources, however, are placed in their own container

 Transactional Databases may only have one logical copy

MQ Technical Conference v2.0.1.8
29

Perspectives - II

❖MQ Administrators

See Application Front-Ends

See Application Back-Ends

See MQ as a Network, not as a Service

❖ Network Engineers

See the actual network

Understand routing and load balancing AT THE NETWORK LEVEL

Do Not see routing and load balancing AT THE SERVER LEVEL

MQ Technical Conference v2.0.1.8
30

Perspectives & Skills

❖ Multiple roles required to deploy Cloud Applications

Cloud developer (Programmer) & Cloud deployer (DevOps)

 Infrastructure, Middleware, & Cloud Administrators

Network Engineers & Security Administrators

❖ You Don’t Know What You Don’t Know

You know your owner complexities

You may not know, or may underestimate, complexities of other roles

 It takes a village to nurture software and the village is growing

❖ MQ Administrators MUST learn about the Cloud

 It’s NOT just another computing location

 It’s an entirely new Software Stack; from top to bottom

The only thing in common is Linux, but even that doesn’t translate

Network knowledge is even more important now

MQ Technical Conference v2.0.1.8
31

MQ in the Cloud - Containers

Challenges of Porting

Networks into Containers

A Square Peg in a Round Hole

MQ Technical Conference v2.0.1.8
32

MQ in the Cloud (in Containers) - I

❖ MQ designed for a server based environment
Communications through DNS or TCP addresses

Server addresses (both DNS and IP) relatively static

Server address changes not expected to update in real time

❖ Containers designed for a very dynamic environment
Container instances continuously created and destroyed

Container instances running across multiple servers & data centers

Most containers don’t need to persist data

Data persistence requires shared disk

❖ MQ Challenges
Channel definitions (CONNAME)

Cluster membership

Queue Manager location for Applications to read messages

MQ Technical Conference v2.0.1.8
33

MQ in the Cloud (in Containers) - II

❖Three patterns of Application Communications

Asynchronous Writers/Publishers

Request/Reply processing

Asynchronous Readers/Subscribers

❖MQ Writer/Publisher and Request/Reply Processing
From an Application perspective, MQ provides all of the “magic” to

make Asynchronous Writes and Request/Reply processing work!

Therefore, these seem logical to Application developers and architects

to containerize.

But how will these containers communicate with other Qmgrs?

 Built-in Sender channels?

 How about, if needed, Receiver channels?

MQ Technical Conference v2.0.1.8
34

MQ in the Cloud (in Containers) - III

❖MQ Reader/Subscriber and Processing
From an Application perspective, how can the Application connect to

an unknown Queue Manager at an unknown location?

But how will these containers communicate with other Qmgrs?

 Built-in Sender channel definitions assume destination stability.

 How about, if needed, Receiver channels? How would the

corresponding Sender channels be defined?

❖All Queue Managers
Persisting messages requires usage of shared disk

Shared disk limits location of servers that can host the container

Much closer integration with network configuration

 e.g. F5 Global Traffic Management (GTM) DNS routing

 e.g. FT Local Traffic Management (LTM) Load Balancing

MQ Technical Conference v2.0.1.8
35

IIB/ACE in the Cloud (in Containers)

❖ Both MQ and TCP Design considerations

❖ If MQ is only used locally by IIB/ACE then no issues

❖ If MQ connects with other Qmgrs, then same MQ issues

❖ TCP issues can be handled by incoming Load Balancing

❖ TCP based services require a “Global” front-end address

❖ Standard Istio Service Mesh processes could handle

local Service registration

MQ Technical Conference v2.0.1.8
36

MQ in the Cloud - Containers

Summary

Anchored at the shore of the New World

MQ Technical Conference v2.0.1.8
37

The Potential for Containers

❖ High Availability

A specific Queue Manager, using shared disk, could potentially run

on any server capable of connecting to the shared disk

Kubernetes managed HA would potentially seem to be highly

desirable

❖ Horizontal Scaling (up to Extremely Large scales)

Already possible for some MQ Communication Patterns

 Asynchronous Writer/Publisher

 Request Reply

Already possible for IIB TCP based Services

 Global Service Address

 Local registration using Istio

MQ Technical Conference v2.0.1.8
38

Questions & Answers

MQ Technical Conference v2.0.1.8
39

Presenter
 Glen Brumbaugh

– Glen.Brumbaugh@TxMQ.com

 Computer Science Background
– Lecturer in Computer Science, University of California, Berkeley

– Professorial Lecturer in Information Systems, Golden Gate University, San Francisco

 WebSphere MQ Background (25 years plus)
– IBM Business Enterprise Solutions Team (BEST)

o Initial support for MQSeries v1.0

o Trained and mentored by Hursley MQSeries staff

– IBM U.S. Messaging Solutions Lead, GTS

– Platforms Supported

o MVS aka z/OS

o UNIX (AIX, Linux, Sun OS, Sun Solaris, HP-UX)

o Windows

o iSeries (i5OS)

– Programming Languages

o C, COBOL, Java (JNI, WMQ for Java, WMQ for JMS), RPG

mailto:Glen.Brumbaugh@TxMQ.com

MQ Technical Conference v2.0.1.8
40

