Automated cluster health
monitoring

T.Rob Wyatt

MQ Technical Conference v2.0.1.8

Your MQ Cluster is as critical as the
most critical app that runs over it.

So when was the last time
it had a checkup?

e

MQ Technical Conference v2.0.1.8

Nothing wrong with commercial solutions...

If you own them.

For the rest of us, here’s a (relatively)
simple, scripted, DIY cluster health checker.

e

MQ Technical Conference v2.0.1.8

Approach — Reconcile repository objects

= Both full repositories should contain a record of each object known to the
cluster.

= |n a healthy cluster, both full repositories will have the same set of objects
in inventory.

= |n a healthy cluster, both full repositories will show identical state for any
given object.

® These assertions assume that no updates are pending in the cluster.

For purposes of this tool, an unhealthy cluster...

= May have discrepancies in the sets of objects reported by the repositories

= May have discrepancies in the state of any given object as reported by
both repositories

= Or a combination of these.

e

MQ Technical Conference v2.0.1.8

Approach — Methodology

= Collect DIS QCLUSTER and DIS CLUSQMGR output from both repositories
= Strip local attributes away, such as local update time of the objects
= Reconcile the object inventory by object name, type, and hosting QMgr.

= Reconcile the cluster attribute state for each object
» Queues: PUT, DEFBIND, MAXMSGL, etc.
» Channels: CONNAME, SSLCIPH, etc.

» QMgrs: Type, suspend status, etc.

Note: Local attributes such as timestamps and some operational state such
as whether a channel is currently active are ignored.

e

MQ Technical Conference v2.0.1.8

Approach — Script design

= Cluster state is dynamic. Therefore a race condition exists if the cluster
records are collected as they are needed. Collecting them all at once does
not eliminate the race condition but it does minimize the race window.

= The script begins by collecting QCLUSTER and CLUSQMGR records for
each repository and saving this data into arrays.

m Later each array is piped through utilities like grep, sed, sort, etc. to
perform the analysis.

= Since client runmgsc can be a bit fragile, the collection is re-run up to 10
times or until an error-free sample is obtained.

_ MQ Technical Conference v2.0.1.8

Approach — ldentifying repositories

The sample script provided fetches a flat-file database from a web server to
determine the full repositories. This is the same file format as last year’s
presentation which fetched the same file from an Amazon S3 bucket.

An alternative is to connect to any convenient QMgr and query the full
repositories it knows about, or simply pass the cluster name and repository
names to the script.

The connection parameters for each of the repositories are fetched from
Avada’s IR-360 Connection Inventory Report because my last client used that
tool and this was the place to get a comprehensive inventory of all QMgrs and
their connection details.

An alternative is to use the MQ Explorer MQHandles.xml file, a CCDT file, a
flat parameter file, or just pass the connection details to the script.

e

MQ Technical Conference v2.0.1.8

D
An approach

to reconciling

cluster records

e

MQ Technical Conference v2.0.1.8

Comparing repository records

= ALTDATE and ALTTIME refer to the object. These should be identical.

= The QMID is that of the QMgr hosting this instance of the object. If the
repository has more than one entry for the same object name, they will
differ by their QMID fields.

s CLUSDATE and CLUSTIME refer to the local repository’s record about the
object and therefore will almost never be identical. When reconciling
object records, these fields must be ignored.

= Note that if CLUSDATE and CLUSTIME differ across repositories by hours
or even days this indicates extremely slow propagation of cluster control
data and should be investigated. That is a good topic for a different
session but not the kind of thing this script will catch, once the
propagation has completed.

e

MQ Technical Conference v2.0.1.8

Comparing CLUSQMGR records

Same as above with these additional considerations:

= The CLUSQMGR records for the repositories will never be identical
because they will be DEFTYPE of CLUSSDRB (hopefully!) on the remote
repository and DEFTYPE of CLUSRCVR on the local repository.

s Because DEFTYPE is a critical field to check, the script logic is simpler to
keep that field and instead delete the entries for the repositories.

= |f the repositories are hosted on dedicated QMgrs that have no business
objects or traffic, their CLUSQMGR records can safely be ignored.

= Yet another good reason to host repositories on dedicated QMgrs.

_ MQ Technical Conference v2.0.1.8

Processing

CLUSOMGR

Records

A typical CLUSQMGR record

CLUSQMGR(BIRCH) ALTDATE(2018-09-23) ALTTIME(18.03.13) BATCHHB(0)
BATCHINT(0) BATCHLIM(5000) BATCHSZ(50) CHANNEL(FOREST.BIRCH)
CLUSDATE(2018-09-23) CLUSTER(FOREST) CLUSTIME(18.10.56)
CLWLPRTY(0) CLWLRANK(0) CLWLWGHT(50) COMPHDR(NONE)
COMPMSG(NONE) CONNAME(localhost(1415)) CONVERT(NO)
DEFTYPE(CLUSSDRB) DESCR() DISCINT(6000) HBINT(300) KAINT(AUTO)
LOCLADDR() LONGRTY(999999999) LONGTMR(1200) MAXMSGL(4194304)
MCANAME() MCATYPE(THREAD) MCAUSER() MODENAME() MRDATA()
MREXIT() MRRTY(10) MRTMR(1000) MSGDATA() MSGEXIT() NETPRTY(0)
NPMSPEED(FAST) PASSWORD() PROPCTL(COMPAT) PUTAUT(DEF)
QMID(BIRCH_2018-09-19_18.06.20) QUTYPE(REPOS) RCVDATA() RCVEXIT()
SCYDATA() SCYEXIT() SENDDATA() SENDEXIT() SEQWRAP(999999999)
SHORTRTY(10) SHORTTMR(60) SSLCAUTH(REQUIRED) SSLCIPH()
SSLPEER() STATUS(RUNNING) SUSPEND(NO) TPNAME() TRPTYPE(TCP)
USEDLQ(YES) USERID() VERSION(09000000)
XMITQ(SYSTEM.CLUSTER.TRANSMIT.QUEUE)

e

MQ Technical Conference v2.0.1.8

Prepare data for reconciliation

= Extract the CLUSQMGR repository data from the arrays.

= Exclude the repository records.

= Create a record containing the name of the repository on which this record
was found and the QMID field from the record. Discard everything else.

RECS1=%$(echo "${CLUSQMGR[$REPO1]}" | grep AMQ8441 | grep -v -e
$REPO1 -e $REPO2 | sed "s/.* QMIDO\([™)]*\)).*/$REPO1 \1/g")

RECS2=%$(echo "${CLUSQMGR[$REPO2]}'" | grep AMQ8441 | grep -v -e
$REPO1 -e $REPO2 | sed "'s/.* QMIDQO\N([™1*\)).*/$REP0O2 \1/g'")

_ MQ Technical Conference v2.0.1.8

Reconcile CLUSQMGR inventory

m Sort [repo name] QMID records by QMID (field #2)
= Print only unique lines based on offset into record by 1 field, i.e. field #2

= Count results. Healthy=zero unique lines (every QMID appears twice)

= Otherwise, report unique lines. The [repo name] in the record tells the
user which repository contains a record that the other does not.

Use sort & unig to compare list of QMID fields at each repository.

iIT [[$(printf "$RECSI\NSRECS2\n" | sort -k 2 | unigq -u -F 1 | wc -1) -eq 0]11;

then
QMgr member populations in cluster match across repositories
printf "Both repositories reporting the same cluster members.\n" |
tee -a $ CONSOLE

else
QMgr member populations in cluster do NOT match across repositories
printf "List of differing QMgrs follows, tagged by repository:\n\n"
printf "$RECSI\n$RECS2" | sort -k 2 | unig -u -f 1 | grep -v "$” |
awk “{print <tr><td>" $1 </td><td>" $2 "'</td></tr>";}’

fi

_ MQ Technical Conference v2.0.1.8

To-Do

= The current version of the report checks only whether the inventory of
QMGrs across both repositories contains identical QMID values. It would
be helpful to reconcile down to the individual field level as well. For
example, if the two repositories have different cluster weight and rank
vales for the same QMgr, the behavior of any given QMgr with respect to
that channel depends on which repository provided its information for that
QMgr.

= Would be nice to handle the case in which there are more than two full
repositories. Although this is an edge case, it is arguably one that needs
health checking even more so than does a normal cluster.

e

MQ Technical Conference v2.0.1.8

Processing

PCLUSTER

Records

A typical QCLUSTER record

echo "DIS QCLUSTER(*) CLUSTER($CLUSTER) ALL" | runmqgsc $QMGR | sed
's/\+/ /g"' | perl -ne ‘chomp; print "\n" unless /* /; print;’

Captures QCLUSTER, compacts spaces and reduces to one line per object:

ASH: QUEUE(SOME.CLUSTERED.QUEUE) TYPE(QCLUSTER) ALTDATE(2018-
09-23) ALTTIME(18.09.05) CLUSDATE(2018-09-23) CLUSTER(FOREST)
CLUSQMGR(BIRCH) CLUSQT(QLOCAL) CLUSTIME(18.10.56) CLWLPRTY(0)
CLWLRANK(0) DEFBIND(OPEN) DEFPRTY(0) DEFPSIST(NO)
DEFPRESP(SYNC) DESCR() PUT(ENABLED) QMID(BIRCH_2018-09-
19_18.06.20)

BIRCH: QUEUE(SOME.CLUSTERED.QUEUE) TYPE(QCLUSTER)
ALTDATE(2018-09-23) ALTTIME(18.09.05) CLUSDATE(2018-09-23)
CLUSTER(FOREST) CLUSQMGR(BIRCH) CLUSQT(QLOCAL)
CLUSTIME(18.09.05) CLWLPRTY(0) CLWLRANK(0) DEFBIND(OPEN)
DEFPRTY(0) DEFPSIST(NO) DEFPRESP(SYNC) DESCR() PUT(ENABLED)
QMID(BIRCH_2018-09-19_18.06.20)

e

MQ Technical Conference v2.0.1.8

Comparing Queue object records

= ALTDATE and ALTTIME refer to the object. These should be identical.

= The QMID is that of the QMgr hosting this instance of the object. If the
repository has more than one entry for the same object name, they will
differ by their QMID fields.

s CLUSDATE and CLUSTIME refer to the local repository’s record about the
object and therefore will almost never be identical. When reconciling
object records, these fields must be ignored.

= Note that if CLUSDATE and CLUSTIME differ across repositories by hours
or even days this indicates extremely slow propagation of cluster control
data and should be investigated. That is a good topic for a different
session but not the kind of thing this script will catch, once the
propagation has completed.

e

MQ Technical Conference v2.0.1.8

Reconcile by field contents

RECS1=$(echo "${QCLUSTER[$REPO1]}" | grep AMQ8409 | sed "s/"~AMQ8409: Display
Queue details\. \(.*\)$/$REPO1 \1/g')
RECS2=$(echo "${QCLUSTER[$REPO2]}" | grep AMQ8409 | sed "s/"AMQ8409: Display
Queue details\. \(.*\)$/$REPO2 \1/g'")

Use sort & unig to compare list of QMID fields at each repository.
iIT [[$(printf "$RECSI\NSRECS2\n"" | sed "s/CLUSTIME([™M)]1*)//" | sed
s/CLUSDATE([™)]1)//" | sort -k 2 | uniq -u -F 1 | wc -1) -eq O]]; then
QMgr member populations i1In cluster match across repositories
printf "Both repositories reporting the same cluster queues.\n"
else
QMgr member populations in cluster do NOT match across repositories
printf "$RECSI\n$RECS2" | sed *s/CLUSTIME([™M)]1*)//" |
sed "s/CLUSDATE([™M)]1*)//" | sort -k 2 | unigq -u -F 1 | {
while read LINE
do
printf "<tr><td>${LINE%% *}</td><td>${LINE#* }</td></tr>\n"
done

i

_ MQ Technical Conference v2.0.1.8

Field reconciliation methodology

= Replace the AMQ8409 eye catcher with the repository name. In the event
we find unique lines, it will be helpful to have the repository name that
holds the record.

m Skipping the repository name, apply sort and uniq on all the lines.
» Lines that are on only one repository will be unique.
» Lines where fields differ will be unique.

= Count the results. A healthy cluster will have zero unique lines.

= |f unique lines are found, report these.

_ MQ Technical Conference v2.0.1.8

Code Walkthrough

e

MQ Technical Conference v2.0.1.8

300 lines of code =

If you can’t read e —
these, you maywant -

to move to the front
of the room. e —

Go ahead. I'll wait. %

MQ Technical Conference v2.0.1.8

Summarizing

e

MQ Technical Conference v2.0.1.8

Some mgsc client error codes to look for

= AMQ9508: Program cannot connect to the queue manager.
This is fatal if encountered.

= AMQ8416: MQSC timed out waiting for a response from the command
server.

Script retries up to 10 times.

= AMQ8101: An unexpected reason code with hexadecimal value 457 was
received from the IBM MQ queue manager during command processing.
Script retries up to 10 times.

e

MQ Technical Conference v2.0.1.8

Possible uses

= Run while QMgrs are lightly loaded and post results to a web page.
= Push to Splunk, ELK, or other log ingention and analysis engine.

= Feed to your favorite monitoring tool to create tickets or page on-call.
» May need to add resiliency features before raising a ticket or paging the on-call.
» In particular, to help with Command Server fragility, make sure MAXDEPTH on the
runmqgsc model queue is large enough to contain all possible result sets.
» If on a clear run uniqueness is discovered for the first time, run again and report if
uniqueness is consistent after 2, or even 3 iterations.

_ MQ Technical Conference v2.0.1.8

Simple and effective

Since by definition a healthy cluster will store consistent state across the
repositories, uniqueness of state data indicated an unhealthy cluster.

Sort and uniq are particularly well suited for this task!

After reducing cluster records to their significant fields, eliminate those with
duplicates then count and print what remains.

_ MQ Technical Conference v2.0.1.8

Questions & Answers
i - ‘?\'g
.

MQ Technical Conference v2.0.1.8

Tutorials and more

People kept asking where to find the slides, videos. Here ya go...

® YouTube tutorials: https://www.youtube.com/tdotrob

= Twitter
» @deepqueue (MQ & security)
» @tdotrob (MQ & security + politics, humor, autism)

m Linkedin: https://www.linkedin.com/in/tdotrob/

= Blogging on general IT, security, malvertising. How to hire me:
https:/lioptconsulting.com

= MQ web site and blog: https://t-rob.net (Slides are uploaded here)

All my web sites are linked together in the nav bar. Go to Ask-An-Aspie for
autism content, or The Odd is Silent for everything that’s not autism or IT.

e

MQ Technical Conference v2.0.1.8

CoOoO~NOULA,WNPE

#1/bin/ksh

[path to script goes here]
#

Cluster health report

3+

20180319 T.Rob - New script

PROG=${0##*/}

:VERS:"vl.Z" # Please update the version number when updating the program!

_DATE="date ""+%Y%m%d" "
_RPTDIR=~mgm/ 1R360/ Infrared360SA/webapps/ Infrared360/exports

_SCRIPTDIR="$%(cd "$(dirname "$0"")"; pwd)"
cd "$ SCRIPTDIR"

export MQSSLKEYR="$ SCRIPTDIR/key""

export MQCHLLIB="$ SCRIPTDIR"

export MQCHLTAB="$_PROG.TAB"

Comment out line below when not testing
_TESTING=1
_VERBOSE=0

Establish associative arrays for cluster data
typeset -A CLUSQMGR
typeset -A QCLUSTER

Exceptions found? Yes if not NULL.
_ERRFLAG=

Set report directory to CWD for testing.
[[$(whoami) '= "mgm"™]] && _RPTDIR=.

Cluster name must be passed
CLUSTER=$(echo "${1}" | tr -d -c "[a-zA-Z0-9_.1")

[[$# -eq 0]] && print "$ PROG: FATAL! Please pass a cluster name.\n" && exit

Set up temp file to catch console log output
_CONSOLE=""$(mktemp -p $ RPTDIR --suffix=.txt $ DATE.$ PROG.XXXXXXXXXX)"
trap "rm -f $ CONSOLE"™ EXIT

Set up report file name using current date and cluster name
_FILE=${ DATE}-$ PROG-$CLUSTER.html

Delete file if It exists, in case noclobber option is set
rm -f $ RPTDIR/S FILE

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97

Use cluster name passed to fetch repository names then check for success
This uses a config file served from IR-360. Last year we used an S3 bucket.
Alternatively, pass the repository names or connect to a convenient QMGR
and query the clusters and repositories it knows about.

NOTE! This script assumes exactly two repositories for any cluster! Any
fewer and it breaks. More than two the results will be inconclusive.

HFHIFHEFHEHHH

REPO1=$(curl --cacert CA.pem -s -u sa:sa https://ir360dev:9443/Infrared360/cfg/Clusters.ini | grep $CLUSTER | grep -i -e ":PRI:" | sed "s/:.*//")
REPO2=$(curl --cacert CA.pem -s -u sa:sa https://ir360dev:9443/Infrared360/cfg/Clusters.ini | grep $CLUSTER | grep -i -e ":SEC:" | sed "s/:.*//")

[[${#REPO1} -eq O || ${#REPO2} -eq O 1] && print "$ PROG: FATAL! Fetch of repository names for cluster $CLUSTER failed.\nValues returned were
REPO1="$REPO1" and REPO2="$REPO2"\n" && exit

#H = = = ====

Validation complete. Notify user and proceed.

H = = = ====

printf "$ PROG - Begin cluster reconciliation report for $CLUSTER at $(date)\nPrimary=$REPO1l, Secondary=$REPO2\n\n" | tee -a $ CONSOLE

print "<IDOCTYPE html>

<html>

<head>

<meta http-equiv=\""Content-Type\" content=\"text/html; charset=utf-8\" />

<title>$CLUSTER Cluster Health</title>

<style type=\"text/css\'>
hl {font-family: Arial, Helvetica, sans-serif;font-weight: normal;text-align: center;vertical-align: middle; color: #000}
h2 {font-family: Arial, Helvetica, sans-serif;font-weight: normal;text-align: center;vertical-align: middle; color: #000}
td {vertical-align: top;font-family: Arial, Helvetica, sans-serif;}
caption {font-family: Arial, Helvetica, sans-serif;color: #006;}
th {font-family: Arial, Helvetica, sans-serif;font-weight: bold;}

</style>

</head>

<body>
<hl align=""center'>$CLUSTER Cluster Health Report</hl>
<h2 align="center'>Repositories $REPO1 and $REPO2
Report run at $(date)</h2>" > $ RPTDIR/$ FILE

H = = = —====

Gather CLUSQMGR and QCLUSTER records

#H = = = ====

echo IR-360 returned $(curl --cacert CA.pem -s -H "Accept:application/json” -u sa:sa
https://ir360dev:9443/Infrared360/reports/ConnectionlnventoryWmg-Report.csv | grep -v -e *,,,,," - ™Name | sed "s/"\([™"T\+\),\(["I\+\)"/\1:\2/g"
-1) QMgrs. | tee -a $ CONSOLE

_FOUND=0

| wec

curl --cacert CA.pem -s -H "Accept:application/json” -u sa:sa https://ir360dev:9443/Infrared360/reports/ConnectionlnventoryWmg-Report.csv | grep -v -e

98

99
100
101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118

119

120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137

138
139

"L asss =€ ™Name | sed "s/"\([MI\+\)L,N\N(MINHN)"NAL:N\2/g7 | {
while read LINE

do

QMNAME,hostl[:host2],port,SVRCONN.NAME,CIPHER]|CIPHER(dup) | TLSversion
QMGR=$(echo "S$LINE"™ | cut -d *," -f 1)

HOST=$(echo "$LINE"™ | ,
PORT=$(echo "$LINE"™ | cut -d "," -F 3)
CHL=$(echo "S$LINE" | .
CIPH=$(echo "S$LINE" | ,

cut -d *," -f 2)

cut -d *
cut -d -

" _f 4)
* f5] cut -d "|* -F 1)

if [["$OMGR"™ == "$REPO1" || "$QMGR" == "$REPO2'"]]; then
echo ""DEF CHANNEL($CHL) CHLTYPE(CLNTCONN) CONNAME("${HOST//:/($PORT),}($PORT) ") SSLCIPH($CIPH) QMNAME($QMGR) REPLACE"™ | runmgsc -n >
/dev/null 2>&1

Fault tolerance: lterate mgsc queries until success or 10 attempts
_ATTEMPTS=0
while [[$ ATTEMPTS -1t 10 1]

do

done

printf "." | tee -a $ CONSOLE
((_ATTEMPTS=_ATTEMPTS+1))

Gather cluster info

CLUSQMGR[$QMGR]=""$(echo "DIS CLUSQMGR(*) CLUSTER($CLUSTER) ALL"™ | runmgsc -e -w 10 -c $QMGR | sed "s/ \+/ /g" | perl -ne “"chomp; print
"\n" unless /» /; print;")"

QCLUSTER[$QMGR]="$(echo "DIS QCLUSTER(*) CLUSTER($CLUSTER) ALL" | runmgsc -e -w 10 -c $QMGR | sed "s/ \+/ /g~ | perl -ne “chomp; print
"\n" unless /» /; print;")"

Check for fatal errors
it [[$(print "${CLUSQMGR[$QMGR]F}\n${QCLUSTER[$SQMGR]}"" | grep -e AMQ9508 | wc -1) -ne 0]]; then

printf "\nFATAL: Unrecoverable error. Aborting run.\n" | tee -a $ CONSOLE

printf "${CLUSQMGR[$OMGR]}${QCLUSTER[$QMGR]}" | grep "7~AMQ" | sort | uniq | tee -a $ CONSOLE
printf "\n\n" | tee -a $ CONSOLE

exit

Ti

Check for errors indicating timeout. Break from loop if no errors.

[[$(print "${CLUSQMGR[$QMGR]}\n${QCLUSTER[$QMGR]}" | grep -e AMQ8416 -e AMQ8101 | wc -1) -eq 0]] && [[$(echo "${CLUSQMGR[$QMGR]}" |
grep AMQ8441 | grep CLUSSDR | wc -1) -ne 0 1] && [[$(echo "${QCLUSTER[$QMGR]}" | grep AMQ8409 | wc -1) -ne 0 1] && break

[[$(echo "${CLUSQMGR[$QMGR]}" | grep AMQ8441 | wc -1) -eq 0 1] && printf '"\nFound unhandled CLUSQMGR exception:\n" && print
"${CLUSQMGR[$QMGR]}"* | grep “AMQ | sort | uniq

[[$(echo "${QCLUSTER[$QMGR]}" | grep AMQ8409 | wc -1) -eq 0 1] && printf "\nFound unhandled QCLUSTER exception:\n" && print
"${CLUSQMGR[$QMGR]}" | grep “AMQ | sort | uniq

printf ""\nRepository $QMGR returned:\n%5d clusgmgr records\n%5d qcluster records\nAfter $ ATTEMPTS attempts.\n\n" $(echo
"${CLUSQMGR[[SQMGR]}"" | grep AMQ8441 | grep CLUSSDR | wc -1) $(echo "${QCLUSTER[$QMGR]}" | grep AMQ8409 | wc -1) | tee -a $ CONSOLE
it ! [[$ ATTEMPTS -1t 10 |] $(echo "${CLUSQMGR[SQMGR]}" | grep AMQ8118 | grep CLUSSDR | wc -1) -gt 0]]; then

printf "\nFATAL: Unable to obtain clean run from $QMGR query after $ ATTEMPTS attempts. Aborting run.\n" | tee -a $ CONSOLE
echo "${CLUSQMGR[$QMGR]}${QCLUSTER[SQMGR]}"" | grep -v "~AMQ8409" | grep -v "~AMQ8441" | grep -v "~AMQ8450" | grep -v "~$" | tee -a

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185
186

$_CONSOLE

printf "\n\n" | tee -a $ CONSOLE
exit
fi
((_FOUND=_FOUND+1)) # So we can check later that all repositories were processed in case IR-360 connection for one is missing.
else
[[$ TESTING -eq 1 1] && [[$ VERBOSE -eq 1 1] && printf "Skipping QMgr $QMGR\n" | tee -a $ CONSOLE
fi
done
¥
== == == —====
Reconcile CLUSQMGR records
H == == == —====
printf "Begin reconciliation of CLUSQMGR records.\n" | tee -a $ CONSOLE

RECS1=$(echo "${CLUSQMGR[$REPO1]}" | grep AMQ8441 | grep -v -e $REPO1 -e $REPO2 | sed "'s/.* QMIDQO\([™M)I1*\))-*/$REPO1 \1/g'")
RECS2=$(echo "${CLUSQMGR[$REPO2]}" | grep AMQ8441 | grep -v -e $REPO1 -e $REPO2 | sed "s/.* QMIDQO\([™)]1*\))-*/$REP0O2 \1/g")

if [[$ TESTING -eq 1 && $ VERBOSE -eq 1]]; then
echo -n
echo ""Repol
echo ""Repo2

${CLUSQMGR[$REPO1]}"
${CLUSQMGR[$REP0O2]}"

RECS1=$(echo "$RECS1" | head -n -2) # Force discrepancies
RECS2=$(echo "$RECS2'" | tail -n -4) # Force discrepancies

=h HF H

printf "Found %d cluster member records for $REPO1 and found %d cluster member records for $REPO2\n" $(echo "$RECS1™ | wc -1) $(echo "$RECS2"™ | wc -1) |
tee -a $ CONSOLE
Did we find two repositories?
if [[$ FOUND -1t 2]]; then
printf "\nFATAL: Found less than two repositories. Aborting run.\n" | tee -a $ CONSOLE
exit
fi

print "Now checking for uniqueness.\n"

Print report table header
cat << TBLHDR >> & RPTDIR/S FILE
<table id="clusgmgr"™ width="1080" border="5" align="center" cellpadding="3" cellspacing="1">
<tr><td colspan="2" align="'center" scope="row'><h1>CLUSGMGR Recon Exceptions</hl></td></tr>
<tr><td colspan="2" align="right" style="font-size: 60%; font-style: italic'>
Jump to: Top CLUSQMGR QCLUSTER Console
</td></tr>
<tr>

187
188
189
190
191
192
193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218
219
220
221
222

223

224
225
226
227
228
229
230

231

<th scope="col'>Repository</th>
<th scope="col"">Queue Manager</th>
</tr>
TBLHDR

Use sort & unig to compare list of QMID fields at each repository.
ifT [[$(printf "$RECSI\N$RECS2\n"" | sort -k 2 | uniq -u -f 1] wc -1) -eq 0]]; then
QMgr member populations in cluster match across repositories
printf "Both repositories reporting the same cluster members.\n" | tee -a $ CONSOLE

printf " <tr><td colspan="2" align="'center" scope="row''>Both repositories reporting the same cluster members.</td></tr>\n" >> $ RPTDIR/$ FILE
else

QMgr member populations in cluster do NOT match across repositories

printf "\nALERT! Repositories report differing sets of queue managers.\n\nList of differing QMgrs follows, tagged by repository:\n\n" | tee -a

$ CONSOLE

printf "$RECSI\N$RECS2" | sort -k 2 | uniq -u -F 1 | grep -v "$" | awk "{print "<tr><td>" $1 "</td><td>" $2 "</td></tr>";}" >> $ RPTDIR/S FILE
[[$ TESTING -eq 1 1] & [[$ VERBOSE=1]] && printf "$RECSI\n$RECS2" | sort -k 2 | uniq -u -f 1 >> $ CONSOLE

fi

printf "\n</table>\n<p> </p>\n" >> $ RPTDIR/S FILE

== == == —====
Reconcile QCLUSTER records

H == == == —====
printf '"\n\nBegin reconciliation of QCLUSTER records.\n" | tee -a $ CONSOLE

Print report table header
cat << TBLHDR >> $ RPTDIR/S FILE
<table id="qcluster”™ width="1080" border="5" align="center"™ cellpadding="3" cellspacing=""1">
<tr><td colspan="2" align="'center" scope="row'><hl1>QCLUSTER Recon Exceptions</hl></td></tr>
<tr><td colspan="2" align="right" style="font-size: 60%; font-style: italic'>
Jump to: Top CLUSQMGR QCLUSTER Console
</td></tr>
<tr><th scope="col'">Repository</th><th scope="'col''>Queue object</th></tr>
TBLHDR

RECS1=$(echo "${QCLUSTER[$REPO1]}" | grep AMQ8409 | sed "s/~AMQ8409: Display Queue details\. \(.*\)$/$REPO1 \1/g" | sed "s/TYPE(QCLUSTER)
//9;s/CLUSTER($CLUSTER) //g"™)
RECS2=$(echo "${QCLUSTER[$REPO2]}" | grep AMQ8409 | sed "'s/~AMQ8409: Display Queue details\. \(-*\)$/$REPO2 \1/g" | sed "s/TYPE(QCLUSTER)
//9;s/CLUSTER($CLUSTER) //g'™)

if [[-n "$ TESTING"]]; then

echo -n
RECS1="$(head -n -3 <<< "$RECS1')"
i

printf "Found %d records for $REPO1 and found %d records for $REPO2\nNow checking for uniqueness.\n" $(echo "$RECS1"™ | wc -1) $(echo "$RECS2" | wc -1) |
tee -a $ CONSOLE

232 # Use sort & uniqg to compare list of QMID fields at each repository.
233 it [[$(printf "$RECSI\NSRECS2\n"" | sed "s/CLUSTIME([™M)]1*)//" | sed "s/CLUSDATE([™)]1*)//" | sort -k 2 | unig -u -F 1 | wc -1) -eq 0]]; then
234 # QMgr member populations in cluster match across repositories

235 printf "Both repositories reporting the same cluster queues.\n" | tee -a $ CONSOLE

236 printf " <tr><td colspan="2" align="center" scope="row'>Both repositories reporting the same cluster queues.</td></tr>\n" >> $ RPTDIR/$ FILE
237 else

238 # QMgr member populations in cluster do NOT match across repositories

239 printf "\nALERT! Repositories report differing sets of queues.\n\n" | tee -a $ CONSOLE

240 printf "$RECSI\n$RECS2" | sed "s/CLUSTIME([™)1*)//" | sed "s/CLUSDATE([™)1*)//" | sort -k 2 | uniq -u -F1 | {
241 while read LINE

242 do

243 printf " <tr><td valign=top>${LINE%% *}</td><td>${LINE#* }</td></tr>\n" >> $ RPTDIR/$_FILE

244 done

245 }

246 Ti

247 printf "\n</table>\n<p> </p>\n" >> $ RPTDIR/$ FILE

248

249

250 H === === === —====

251 # Print report end matter

252 #H === === === =—===

253 cat << RPTMTHD >> $ RPTDIR/S FILE
254 <table width="1080" border="0" cellpadding="3" cellspacing="1" align="‘center'>

255 <tr><td><h2 id="console" style="text-align:left">Console output:</h2>

256 <div style="font-size: 60%; font-style: italic'>

257 Jump to: Top CLUSQMGR QCLUSTER Console

258 </div></td></tr>

259 <tr><td>

260 <pre>

261 $(<$_CONSOLE)

262 </pre>

263 </td></tr>

264 </table>

265

266 <table id="methodology" width="1080" border="0" cellpadding="3" cellspacing="1" align="center'>
267 <tr><td><h2 style="text-align:left">Methodology</h2></td></tr>

268 <tr><td>

269 <p>Cluster health is checked by comparing the object details in both full repositories using DIS CLUSQMGR(*) and DIS QCLUSTER(*).

270 All of the attributes of the objects are compared except for the cluster date and time. The object update date and time should

271 be identical across repositories, but the timestamps that represent the individual repository®s receipt of the update record

272 routinely varies across repositories due to things like channel start latency.</p>

273

274 <p>In addition to removing the cluster timestamp when processing CLUSQMGR records, the channels between repositories are filtered out
275 because, by definition, these can never be the identical across repositories because for every pair one will be a CLUSSDR and the

276 other a CLUSRCVR.

277

278 <p>After removing the cluster timestamps and inter-repository channels, the remaining results are passed through sort and uniq looking
279 for two specific cases. The first case is that a given object record will exist in one repository but not the other. This results

280 in one instance of a fully-qualified object record in the result set.</p>

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

301
302
303
304
305
306
307
308

<p>The second case is that the object exists in both repositories but with different attributes. For instance one repository might
show the object as PUT enabled while the other shows it as PUT disabled. This results in two instances of the fully-qualified object
record in the result set.</p>

<p>After sorting the records, the unig command strips out all entries that are identical across repositories. The remaining result set
represents exceptions that indicate potential cluster health problems. These are listed in the exception report sorted first by

queue manager name (in the case of CLUSQMGR) or object name (in the case of QCLUSTER), and then by the name of the repository from
which the record was reported.</p>

<p> </p>
<p style="font-size: 60%'>$% PROG $ VERS - $(date -r $ PROG)

</td></tr>
</table>
RPTMTHD
printf '"\n\n<!-- Report Metadata -->\n<!-- Program=$_PROG -->\n" >> $ RPTDIR/$S FILE
env | sort | perl -ne “chomp;print "<I-—- $§ -->\n" unless /\e/;" | grep -v LS _COLORS >> $ RPTDIR/S FILE
printf "\n\n</BODY>\n" >> $ RPTDIR/$ FILE
print '\n\n$ PROG: Report processing completed at $(date) with$([[-z $ ERRFLAG]] && echo -n out) exceptions.\nReport file: $ RPTDIR/$CLUSTER.htmI\n"

| te

#If
L 3

exit

e -a $_CONSOLE

we are running as mgm then link the primary report to the daily version
(whoami) = "mgm” 1] && In -f $ RPTDIR/S FILE $ RPTDIR/SCLUSTER.html

	Automated cluster health monitoring.pdf
	ir360-clusterRpt

