
Capitalware's MQ Technical Conference v2.0.1.7

MQ Tools For Your MQ

Toolkit

Tim Zielke

Capitalware's MQ Technical Conference v2.0.1.7

Introduction and Agenda
 My Background:

• I have been in IT for 20 years with Hewitt Associates/Aon Hewitt/Alight Solutions

• First 13 years mainly on the mainframe COBOL application side

• Last 7 years as a CICS/MQ systems programmer

Session Agenda:

We will cover the following topics that include free tools from the MH06 Trace Tools

supportpac:

• Client mode of runmqsc and mqsc-qmgrs Unix script

• MQ strmqtrc API tracing and mqtrcfrmt

• Application Activity Trace and amqsactz

Capitalware's MQ Technical Conference v2.0.1.7

runmqsc Client Mode

 Starting at MQ v8, IBM has provided a client mode enhancement to runmqsc that allows you

to make a client connection to an MQ queue manager.

Example:

server1 - MQ v8 client is installed

server2 - MQ queue manager QM2 is running

On server1:

- CCDT file CCDT.TAB is located in /home/mqm/client and has an entry for an

encrypted channel connection to QM2 on server2

- SSL keystore is in /home/mqm/client/ssl.

Execute on server1:

> export MQCHLLIB=/home/mqm/client

> export MQCHLTAB=CCDT.TAB

> export MQSSLKEYR=/home/mqm/client/ssl/key

> runmqsc –c QM2

5724-H72 (C) Copyright IBM Corp. 1994, 2015.

Starting MQSC for queue manager QM2.

<- Prompt here! We are connected to QM2 on server2 with runmqsc!

Capitalware's MQ Technical Conference v2.0.1.7

mqsc-qmgrs Unix script in MH06

 This runmqsc client mode enhancement is a nice enhancement, but wouldn’t it also be

helpful if you could do a “runmqsc -c” against a group of queue managers and have the

output for each resource be on one line for easy data mining with a tool like grep? This is

where mqsc-qmgrs comes in.

 mqsc-qmgrs is a Unix script that comes with the MH06 (Trace Tools) supportpac that has a

wrapper around “runmqsc -c” to accomplish the above enhancements. Here are the main

benefits of using mqsc-qmgrs:

1) It can be run against a group of queue managers.

2) Each invocation of “runmqsc -c” runs asynchronously on its own pid for better

performance.

3) The runmqsc results for the different queue managers are collected into one result file.

4) Another one line summary result file is also created that contains each multi-line resource

result (e.g. DIS QL(*) ALL) collapsed into one line for easy data mining with a tool like

grep. Each result line also has the queue manager it is associated with prepended to the

line, again for ease of searching the result data.

Capitalware's MQ Technical Conference v2.0.1.7

mqsc-qmgrs – One Line Summary

If you run the runmqsc command “DIS CHL(*) ALTDATE ALTTIME BATCHHB BATCHINT”

against QM1, you would get back results formatted onto multiple lines like below:

AMQ8414: Display Channel details.

 CHANNEL(CL.2S.SERVER1) CHLTYPE(CLUSRCVR)

 ALTDATE(2016-03-11) ALTTIME(02.08.00)

 BATCHHB(1000) BATCHINT(0)

The one line summary result file would take a multi-line channel result like above, and parse it

into one line with the queue manager prepended to the line:

QM1. AMQ8414: Display Channel details. CHANNEL(CL.2S.SERVER1)

CHLTYPE(CLUSRCVR) ALTDATE(2016-03-11)

ALTTIME(02.08.00) BATCHHB(1000)

Again, this aids in the ability to grep the result data for runmqsc.

Capitalware's MQ Technical Conference v2.0.1.7

mqsc-qmgrs - Usage Notes

1) mqsc-qmgrs requires an input of a queue manager group and a unique identifier text.

A queue manager group contains a list of queue managers. The queue manager groups must

also be defined near the top of the script.

Define qmgr groups here

ALL="QM1 \

 QM2 \

 QM3"

The unique identifier text allows multiple users to run mqsc-qmgrs in the same working

directory. For this doc, we will assume TIMZ is used.

Example: mqsc-qmgrs ALL TIMZ

2) mqsc-qmgrs must be executed in a directory that includes the file mqsc-qmgrs-TIMZ-input.

This file will include the runmqsc commands to execute.

Example: mqsc-qmgrs-TIMZ-input might include the following:

DIS Q(*) ALL

Capitalware's MQ Technical Conference v2.0.1.7

mqsc-qmgrs - Usage Notes

3) mqsc-qmgrs will produce a file in the CWD called mqsc-qmgrs-TIMZ-output-all, which

includes all the runmqsc output from the queue manager group appended together.

4) mqsc-qmgrs will produce a file in the CWD called mqsc-qmgrs-TIMZ-output-all-1LS, which

has the individual results put into one line with the queue manager name prepended to the

line.

mqsc-qmgrs-TIMZ-output-all contains multi-line result output like runmqsc:

AMQ8414: Display Channel details.

 CHANNEL(CL.2S.SERVER1) CHLTYPE(CLUSRCVR)

 ALTDATE(2016-03-11) ALTTIME(02.08.00)

 BATCHHB(1000) BATCHINT(0)

mqsc-qmgrs-TIMZ-output-all-1LS has each result summarized onto one line with qmgr prepended:

QM1. AMQ8414: Display Channel details. CHANNEL(CL.2S.SERVER1)

CHLTYPE(CLUSRCVR) ALTDATE(2016-03-11) ALTTIME(02.08.00)

BATCHHB(1000)

Capitalware's MQ Technical Conference v2.0.1.7

mqsc-qmgrs – Setting It Up

 You need a Unix server that mqsc-qmgrs can run on that has remote connectivity to the

queue manager servers that you want to access.

 MQ v8 or higher MQ Client software installed on this Unix server.

 CCDT for the queue managers that you will be accessing with mqsc-qmgrs. At MQ v8 and

higher, “runmqsc -n” option now supports the ability to edit CCDT files.

 Set up equivalent SVRCONN channels on the queue managers you want to access.

 Set up environment variables similar to the following, and you are now ready to use mqsc-

qmgrs!

> export MQCHLLIB=/home/mqm/client

> export MQCHLTAB=CCDT.TAB

> export MQSSLKEYR=/home/mqm/client/ssl/key

Capitalware's MQ Technical Conference v2.0.1.7

mqsc-qmgrs - Use Cases

 Helpful for MQ administrative analysis. For example, you are moving a queue manager

from server1 to server2, and you need to know all the queue managers that know about a

queue named APP.Q1. You can use mqsc-qmgrs to run the commands “DIS Q(APP.Q1)”

and “DIS QC(APP.Q1)” against the group of relevant queue managers to find out this

information.

 Helpful for MQ administration. For example, you want all your queue managers to have the

setting MONQ(LOW), you can run the command “ALTER QMGR MONQ(LOW)” against all

of your queue managers with mqsc-qmgrs, and get back all the results summarized into one

result file.

 Helpful for MQ monitoring. For example, a user has reported performance issues with a

queue named APP.Q1, and you want to iteratively run a “DIS QS(APP.Q1) TYPE(QUEUE)

ALL” against the 4 queue managers that this queue is defined on to see how this queue is

performing. mqsc-qmgrs gives you a single location to perform this and also get the results

back in a summarized fashion.

Capitalware's MQ Technical Conference v2.0.1.7

MQ strmqtrc API Tracing - Overview

Overview:

strmqtrc tracing is a troubleshooting tool that comes with distributed WebSphere MQ. A

strmqtrc API trace (strmqtrc -t api) of an MQ application will include all of the API calls (i.e.

MQOPEN, MQPUT, etc.) that the application makes, including the before and after of each

API call. The before (denoted with the >> symbol in the trace) has the input data that

application is passing into MQ. The after (denoted with the << symbol in the trace) has the

return data that MQ is returning to the application.

This API data is very helpful in MQ problem determination, as it allows you to see in detail all

of the input data that your application is passing to MQ and what return data your application

is getting back from MQ. The MQ API trace can be cryptic to read, but we will cover a MH06

supportpac trace tool (mqtrcfrmt) that can significantly aid in reading MQ API traces.

Capitalware's MQ Technical Conference v2.0.1.7

MQ API Tracing – amqsput on Linux x86

 Turn on an API trace for the amqsput program

strmqtrc –m qmgr –t api –p amqsput

 Run the amqsput program on a TCZ.TEST1 queue, and do two PUTs to the queue, and

then end the program.

 NOTE: By default, trace writes out on Linux to a file like:
/var/mqm/trace/AMQ16884.0.TRC (where 16884 = pid)

 Turn off the tracing
endmqtrc –a

 Format the trace (this step is not needed for Windows traces)
dspmqtrc AMQ16884.0.TRC > AMQ16884.0.FMT

Capitalware's MQ Technical Conference v2.0.1.7

Reading a strmqtrc API Trace

 We will now look at the AMQ16884.0.FMT trace. The following slides will contain pieces of

that trace, that we will look at in further detail. Note that some of the extraneous trace data

has been edited, so that it can fit on the slide.

Capitalware's MQ Technical Conference v2.0.1.7

AMQ16884.0.FMT - Header
 Lines 3 – 27 have the trace header information, with key environmental and application information.

1 WebSphere MQ Formatted Trace - Formatter V3

2

3 +---+

4 | |

5 | WebSphere MQ Formatted Trace V3 |

6 | =============================== |

7 | |

8 | Date/Time :- 06/30/14 13:15:37 CST |

9 | UTC Time :- 1404152137.740853 |

10 | UTC Time Offset :- 5 (CST) |

11 | Host Name :- MYSERVER123 |

12 | Operating System :- Linux 2.6.32.59-0.7-default |

13 | LVLS :- 7.5.0.3 |

14 | Product Long Name :- WebSphere MQ for Linux (x86-64 platform) |

15 | Build Level :- p750-003-140123 |

16 | Installation Path :- /opt/mqm |

17 | Installation Name :- Installation1 (1) |

18 | License Type :- |

19 | Effective UserID :- 244 (mqm) |

20 | Real UserID :- 244 (mqm) |

21 | Program Name :- amqsput |

22 | Addressing Mode :- 64-bit |

23 | Process :- 16884 |

24 | QueueManager :- MYSERVER123!MQTEST1 |

25 | Reentrant :- 1 |

26 | |

27 +---+

Capitalware's MQ Technical Conference v2.0.1.7

AMQ16884.0.FMT – Columns/API after

 Line 33 shows the column headers which include a microsecond time stamp, process.thread, and API trace data.

 Lines 36 – 46 show an MQCONN after. Remember that after means that this is the data being returned from MQ to the

application, when the API call has ended. This is denoted by the << on line 36. From the end of this call, we can see that it

was successful (Compcode and Reason were zero), and that an Hconn or connection handle was returned (x’06004001’).

Use this Hconn value for the subsequent API calls to follow the connection activity for this specific connection.

33 Timestamp Process.Thread Trace Ident Trace Data

34 ===

35 *13:15:37.742821 16884.1 CONN:1400006 __________

36 13:15:37.742829 16884.1 CONN:1400006 MQCONN <<

37 13:15:37.742831 16884.1 CONN:1400006 Name : Input Parm

38 13:15:37.742832 16884.1 CONN:1400006 Hconn:

39 13:15:37.742834 16884.1 CONN:1400006 0x0000: 06004001 |..@. |

40 13:15:37.742835 16884.1 CONN:1400006 ConnectOpts:

41 13:15:37.742837 16884.1 CONN:1400006 0x0000: 434e4f20 01000000 00010000 |CNO |

42 13:15:37.742838 16884.1 CONN:1400006 Compcode:

43 13:15:37.742840 16884.1 CONN:1400006 0x0000: 00000000 |.... |

44 13:15:37.742841 16884.1 CONN:1400006 Reason:

45 13:15:37.742842 16884.1 CONN:1400006 0x0000: 00000000 |.... |

46 13:15:37.742846 16884.1 CONN:1400006 MQI:MQCONN HConn=01400006 rc=00000000

Capitalware's MQ Technical Conference v2.0.1.7

AMQ16884.0.FMT – MQOPEN before
 Lines 48 – 67 are an MQOPEN before. Remember that before means that this is the data being passed from the

application to MQ, when the call was initiated. This is denoted by the >> on line 48. The inputs being passed in are the

Hconn, Objdesc, Options, Hobj, Compcode, Reason. Note that some data (i.e. ObjDesc) is both input and output data.

Options is just input data. Compcode is just output data.

 Note for the Objdesc (lines 51 - 62), this MQ API data structure is printed in the raw hex data format, with each 16 byte line

formatted to ASCII directly to the right.

48 13:15:37.742881 16884.1 MQOPEN >>

49 13:15:37.742882 16884.1 Hconn:

50 13:15:37.742884 16884.1 0x0000: 06004001 |..@. |

51 13:15:37.742885 16884.1 Objdesc:

52 13:15:37.742887 16884.1 0x0000: 4f442020 01000000 01000000 54435a2e |OD TCZ.|

53 13:15:37.742887 16884.1 0x0010: 54455354 31000000 00000000 00000000 |TEST1...........|

54 13:15:37.742887 16884.1 0x0020: 00000000 00000000 00000000 00000000 |................|

55 13:15:37.742887 16884.1 0x0030: 00000000 00000000 00000000 00000000 |................|

56 13:15:37.742887 16884.1 0x0040: 00000000 00000000 00000000 00000000 |................|

57 13:15:37.742887 16884.1 0x0050: 00000000 00000000 00000000 00000000 |................|

58 13:15:37.742887 16884.1 0x0060: 00000000 00000000 00000000 414d512e |............AMQ.|

59 13:15:37.742887 16884.1 0x0070: 2a000000 00000000 00000000 00000000 |*...............|

60 13:15:37.742887 16884.1 0x0080: 00000000 00000000 00000000 00000000 |................|

61 13:15:37.742887 16884.1 0x0090: 00000000 00000000 00000000 00000000 |................|

62 13:15:37.742887 16884.1 0x00a0: 00000000 00000000 |........ |

63 13:15:37.742888 16884.1 Options:

64 13:15:37.742889 16884.1 0x0000: 10200000 |. .. |

65 13:15:37.742891 16884.1 Hobj : Output Parm

66 13:15:37.742892 16884.1 Compcode : Output Parm

67 13:15:37.742894 16884.1 Reason : Output Parm

Capitalware's MQ Technical Conference v2.0.1.7

AMQ16884.0.FMT – MQOPEN after

 Lines 69 – 89 are an MQOPEN after. Note that we now have a returned Hobj, Compcode, and Reason from the MQOPEN

call.

 The API trace would then contain the rest of our amqsput API calls (i.e. MQPUTs, MQCLOSE, etc.)

69 13:15:37.743138 16884.1 MQOPEN <<

70 13:15:37.743141 16884.1 Hconn : Input Parm

71 13:15:37.743142 16884.1 Objdesc:

72 13:15:37.743144 16884.1 0x0000: 4f442020 01000000 01000000 54435a2e |OD TCZ.|

73 13:15:37.743144 16884.1 0x0010: 54455354 31000000 00000000 00000000 |TEST1...........|

74 13:15:37.743144 16884.1 0x0020: 00000000 00000000 00000000 00000000 |................|

75 13:15:37.743144 16884.1 0x0030: 00000000 00000000 00000000 00000000 |................|

76 13:15:37.743144 16884.1 0x0040: 00000000 00000000 00000000 00000000 |................|

77 13:15:37.743144 16884.1 0x0050: 00000000 00000000 00000000 00000000 |................|

78 13:15:37.743144 16884.1 0x0060: 00000000 00000000 00000000 414d512e |............AMQ.|

79 13:15:37.743144 16884.1 0x0070: 2a000000 00000000 00000000 00000000 |*...............|

80 13:15:37.743144 16884.1 0x0080: 00000000 00000000 00000000 00000000 |................|

81 13:15:37.743144 16884.1 0x0090: 00000000 00000000 00000000 00000000 |................|

82 13:15:37.743144 16884.1 0x00a0: 00000000 00000000 |........ |

83 13:15:37.743145 16884.1 Options : Input Parm

84 13:15:37.743151 16884.1 Hobj:

85 13:15:37.743153 16884.1 0x0000: 02000000 |.... |

86 13:15:37.743154 16884.1 Compcode:

87 13:15:37.743156 16884.1 0x0000: 00000000 |.... |

88 13:15:37.743157 16884.1 Reason:

89 13:15:37.743158 16884.1 0x0000: 00000000 |.... |

Capitalware's MQ Technical Conference v2.0.1.7

mqtrcfrmt tool in MH06

 mqtrcfrmt is a trace tool that comes with the MH06 supportpac. It will help you read a trace

by expanding the MQ data structures and fields in the trace into human readable formats

with MQ constant expansions included. Executables from mqtrcfrmt are provided for Linux

x86, Solaris SPARC, and Windows.

 Example of using the mqtrcfrmt tool to expand our trace:

mqtrcfrmt.linux AMQ16884.0.FMT AMQ16884.0.FMT2

Capitalware's MQ Technical Conference v2.0.1.7

mqtrcfrmt - AMQ16884.0.FMT2
 59 13:15:37.742885 16884.1 Objdesc:
 60 13:15:37.742887 16884.1 0x0000: 4f442020 01000000 01000000 54435a2e |OD TCZ.|

 61 13:15:37.742887 16884.1 0x0010: 54455354 31000000 00000000 00000000 |TEST1...........|

 62 13:15:37.742887 16884.1 0x0020: 00000000 00000000 00000000 00000000 |................|

 63 13:15:37.742887 16884.1 0x0030: 00000000 00000000 00000000 00000000 |................|

 64 13:15:37.742887 16884.1 0x0040: 00000000 00000000 00000000 00000000 |................|

 65 13:15:37.742887 16884.1 0x0050: 00000000 00000000 00000000 00000000 |................|

 66 13:15:37.742887 16884.1 0x0060: 00000000 00000000 00000000 414d512e |............AMQ.|

 67 13:15:37.742887 16884.1 0x0070: 2a000000 00000000 00000000 00000000 |*...............|

 68 13:15:37.742887 16884.1 0x0080: 00000000 00000000 00000000 00000000 |................|

 69 13:15:37.742887 16884.1 0x0090: 00000000 00000000 00000000 00000000 |................|

 70 13:15:37.742887 16884.1 0x00a0: 00000000 00000000 |........ |

 71 16884.1 Objdesc expanded (all fields):

 72 16884.1 StrucId (CHAR4) : 'OD '

 73 16884.1 x'4f442020'

 74 16884.1 Version (MQLONG) : 1

 75 16884.1 x'01000000'

 76 16884.1 ObjectType (MQLONG) : 1

 77 16884.1 x'01000000'

 78 16884.1 ObjectType MQOT_Q

 79 16884.1 ObjectName (MQCHAR48) : 'TCZ.TEST1'

 80 16884.1 x'54435a2e544553543100 . . . 00’

 81 16884.1 ObjectQMgrName (MQCHAR48) : '.........'

 82 16884.1 x'00000000000000000000 . . . 00’

 83 16884.1 DynamicQName (MQCHAR48) : 'AMQ.*

 84 16884.1 x'414d512e2a0000000000 . . . 00’

 85 16884.1 AlternateUserId (MQCHAR12) : '............'

 86 16884.1 x'000000000000000000000000’

Capitalware's MQ Technical Conference v2.0.1.7

mqtrcfrmt - AMQ16884.0.FMT2 - cont
347 13:15:40.064569 16884.1 Putmsgopts:

348 13:15:40.064570 16884.1 0x0000: 504d4f20 01000000 04200000 ffffffff |PMO|

349 13:15:40.064570 16884.1 0x0010: 00000000 01000000 00000000 00000000 |................|

350 13:15:40.064570 16884.1 0x0020: 54435a2e 54455354 31202020 20202020 |TCZ.TEST1 |

351 13:15:40.064570 16884.1 0x0030: 20202020 20202020 20202020 20202020 | |

352 13:15:40.064570 16884.1 0x0040: 20202020 20202020 20202020 20202020 | |

353 13:15:40.064570 16884.1 0x0050: 4d595345 52564552 3132332e 4d515445 |MYSERVER123.MQTE|

354 13:15:40.064570 16884.1 0x0060: 53543120 20202020 20202020 20202020 |ST1 |

355 13:15:40.064570 16884.1 0x0070: 20202020 20202020 20202020 20202020 | |

356 16884.1 Putmsgopts expanded (all fields):

357 16884.1 StrucId (CHAR4) : 'PMO '

358 16884.1 x'504d4f20'

359 16884.1 Version (MQLONG) : 1

360 16884.1 x'01000000'

361 16884.1 MQPMO.Options= (MQLONG) : 8196

362 16884.1 x'04200000'

363 16884.1 Options=MQPMO_NO_SYNCPOINT

364 16884.1 Options=MQPMO_FAIL_IF_QUIESCING

365 16884.1 Timeout (MQLONG) : -1

366 16884.1 x'ffffffff'

367 16884.1 Context (MQLONG) : x'00000000'

368 16884.1 KnownDestCount (MQLONG) : 1

369 16884.1 x'01000000'

370 16884.1 UnknownDestCount (MQLONG) : 0

371 16884.1 x'00000000'

372 16884.1 InvalidDestCount (MQLONG) : 0

373 16884.1 x'00000000'

374 16884.1 ResolvedQName (MQCHAR48) : 'TCZ.TEST1'

375 16884.1 x'54435a2e544553543120 . . . 20'

376 16884.1 ResolvedQMgrName (MQCHAR48) : 'MYSERVER123.MQTEST1

Capitalware's MQ Technical Conference v2.0.1.7

mqtrcfrmt – API Summary Trace

 A User customizable API summary trace can also be generated from our mqtrcfrmt

expanded AMQ16884.0.FMT2 trace by pulling out key lines from the trace.

egrep '(>>$| <<$|Hconn=|Hobj=|Compcode=|Reason=|Hmsg=|Actual Name=|Value=|Options=|Type=|ObjectName

|ResolvedQName |Persistence)' AMQ16884.0.FMT2

 13:15:37.742829 16884.1 CONN:1400006 MQCONN <<

 16884.1 Hconn=06004001

 16884.1 MQCNO.Options= (MQLONG) : 256

 16884.1 Options=MQCNO_SHARED_BINDING

 16884.1 Compcode=0

 16884.1 Reason=0

 13:15:37.742881 16884.1 CONN:1400006 MQOPEN >>

 16884.1 Hconn=06004001

 16884.1 ObjectName (MQCHAR48) :

'TCZ.TEST1.......................................'

 16884.1 MQOO.Options= (MQLONG) : 8208

 16884.1 Options=MQOO_OUTPUT

 16884.1 Options=MQOO_FAIL_IF_QUIESCING

 13:15:37.743138 16884.1 CONN:1400006 MQOPEN <<

 16884.1 ObjectName (MQCHAR48) :

'TCZ.TEST1.......................................'

 16884.1 Hobj=02000000

 16884.1 Compcode=0

 16884.1 Reason=0

 13:15:37.743176 16884.1 CONN:1400006 MQI:MQOPEN HConn=01400006 HObj=00000002 rc=00000000

ObjType=00000001 ObjName=TCZ.TEST1

Capitalware's MQ Technical Conference v2.0.1.7

dspmqtrc - API Summary Trace

dspmqtrc is also inserting one line summary API lines with an “MQI:” text. You can grep lines
that have “MQI:” out of a formatted strmqtrc to get an API summary.

At MQ v8:
16394.1 MQI:MQCONN HConn=01400006 rc=00000000

16394.1 MQI:MQOPEN HConn=01400006 HObj=00000002 rc=00000000 ObjType=00000001 ObjName=TCZ.TEST1

16394.1 MQI:MQPUT HConn=01400006 HObj=00000002 BufLen=00000032 rc=00000000

16394.1 MQI:MQCLOSE HConn=01400006 HObj=00000002

16394.1 MQI:MQDISC HConn=01400006

At MQ v9 (Notice SYNCP and PERS have now been added at v9!):
23284.1 MQI:MQCONN HConn=01400006 rc=00000000

23284.1 MQI:MQOPEN HConn=01400006 HObj=00000002 rc=00000000 ObjType=00000001 ObjName=TCZ.TEST1

23284.1 MQI:MQPUT HConn=01400006 HObj=00000002 BufLen=00000005 rc=00000000 SYNCP(NO) PERS(NO)

23284.1 MQI:MQCLOSE HConn=01400006 HObj=00000002

23284.1 MQI:MQDISC HConn=01400006

Capitalware's MQ Technical Conference v2.0.1.7

mqtrcfrmt – Message Parsing

mqtrcfrmt program has the ability to message parse or analyze an MQ message in a strmqtrc

(or amqsact activity trace) as if it was 1208 (UTF-8) or 1200 (UTF-16). This can be helpful to

validate if a message is being accurately labeled with the CCSID or Encoding, investigating

data conversion issues, etc. See my MQTC 2016 Data Conversion session for more details

about message parsing.

run trace with –d all option to capture message data

> strmqtrc –m QM1 –t api –d all –p mypgmname

For some platforms, use dspmqtrc to format the trace

> dspmqtrc AMQ12345.0.TRC > AMQ12345.0.FMT

mqtrcfrmt program with –m message parsing option to byte analyze message as 1208

> mqtrcfrmt.linux AMQ12345.0.FMT AMQ12345.0.FMT2 –m 1208

Inside AMQ12345.0.FMT2 (we have a message of “niño niño” in UTF-8):

08:06:08.803334 23401.1 Buffer:

08:06:08.803338 23401.1 0x0000: 6e69c3b1 6f206e69 c3b16f |ni..o ni..o |

msg-parser UTF-8 Totals: Line:366 Pid:23401.1 Format:MQSTR CCSID:1208 API:MQGET <<

Byte:11 ASCII:7 MB2:2 MB3:0 MB4:0 Inv:0

msg-parser Byte Analysis: Line:366 2-MB2, 8-MB2

Capitalware's MQ Technical Conference v2.0.1.7

mqtrcfrmt – Message Search

mqtrcfrmt provides the ability to search for a text (in hex or string) of a message in a strmqtrc

trace (or amqsact activity trace), and report the offset of where the match was detected. The

message body in a trace appears 16 characters per trace line, so this provides a way to match

on search strings that are broken over one or many lines.

In a trace (with the strmqtrc -d option), you could have a message traced as follows. A grep

search for the string “dog” would be a miss, since “dog” is broken up over two lines.

Buffer:

 0x0000: 54686520 71756963 6b206272 6f776e20 |The quick brown |

 0x0010: 666f7820 6a756d70 6564206f 76657220 |fox jumped over |

 0x0020: 74686520 736c6f77 206c617a 7920646f |the slow lazy do|

 0x0030: 67 |g |

Using mqtrcfrmt, you can run the following command to match on the string “dog”:

./mqtrcfrmt.linux AMQ12345.0.FMT AMQ12345.0.FMT2 -s “dog”

There would then be the following text inserted after the message in the FMT2 file:

msgSearch: hit at message offset 2e

Capitalware's MQ Technical Conference v2.0.1.7

mqtrcfrmt – msg2File

If you insert a special tag “msg2File-” above a “Buffer:” line in a strmqtrc trace or a “Message

Data:” line in an amqsact activity trace, the mqtrcfrmt program will write the bytes of the

message to a file (max length of file name is 20) whose name follows the “msg2File-“ tag.

For example, if you add this msg2File line before a message Buffer in strmqtrc:

14:49:27.664265 29003.1 CONN:1400006 msg2File-file1

14:49:27.664265 29003.1 CONN:1400006 Buffer:

14:49:27.664269 29003.1 CONN:1400006 0x0000: 0066006F 0078D801 DC37 |................|

then a file called file1 will be written out in your current directory that contains the bytes of the

message in the Buffer.

As a convenience, a Java (1.5 compiled) MQFile2Msg.class executable is provided to be able

to take a file like the one that msg2File will produce and PUT it back to a queue.

This functionality allows you to capture and reuse messages without having to stop running

MQ applications.

Capitalware's MQ Technical Conference v2.0.1.7

mqapitrcstats - Trace Performance Tool

 API tracing provides microsecond timings in the trace record. By finding the API begin (i.e.

MQGET >>) and the API end (i.e. reason field of MQGET <<) you can roughly calculate the

time it took for the API MQGET to complete. Do note that tracing does add overhead to the

timings, but this can still be helpful for diagnosing gross performance issues.

 48 13:15:37.742881 16884.1 CONN:1400006 MQOPEN >>

 69 13:15:37.743138 16884.1 CONN:1400006 MQOPEN <<

 88 13:15:37.743157 16884.1 CONN:1400006 Reason:

 89 13:15:37.743158 16884.1 CONN:1400006 0x0000: 00000000

13:15:37.743158 - 13:15:37.742881 = 0.000277 seconds to complete for the MQOPEN

 mqapitrcstats tool in the MH06 Trace Tools supportpac will read an entire API trace and

create a summary report of the response times of the open, close, get, put, and put1 API

calls. Executables are provided for Linux x86, Solaris Sparc, and Windows.

Capitalware's MQ Technical Conference v2.0.1.7

MQOptions and mqidecode

 The MH06 supportpac has a Java tool called MQOptions that can help with deciphering

many MQ option fields.

>java MQOptions

The current platform you are running on is Little-endian.

IMPORTANT: You may need to first reverse the bytes of your options value, depending on the endianness of this field!
Refer to the MQOptions manual for more information on endianness, if needed.

Enter your options field (conn, open, get, put, close, cbd, sub, subrq, report) open
Enter your value (i.e. 8208 or 0x00002010) 8208

open options for decimal value 8208 and hex value 0x2010 converts to:
0x00000010 MQOO_OUTPUT

0x00002000 MQOO_FAIL_IF_QUIESCING

 Another tool that can do this is the mqidecode tool in the MS0P (WebSphere MQ Explorer

Extended Management Plug-ins) supportpac. mqidecode can also decode many other

fields, besides option fields.

>mqidecode -p MQOO -v 8208
MQOO_OUTPUT (0x00000010)

MQOO_FAIL_IF_QUIESCING (0x00002000)

Capitalware's MQ Technical Conference v2.0.1.7

Application Activity Trace

 The Application Activity Trace was first introduced in 7.1. It provides detailed information of

the behavior of applications connected to a queue manager, including their MQI (or API) call

details.

 The Activity Trace is another tool that can be helpful in MQ problem determination or

application review, by giving you visibility to the inputs and outputs of your application API

calls. It is also more user friendly than strmqtrc tracing.

Capitalware's MQ Technical Conference v2.0.1.7

Activity Trace – Usage Notes

 Applications write Activity Trace records to the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE.

 There is a hierarchy to turning ON/OFF the Activity Trace:

1) Globally with ACTVTRC queue manager attribute (ON/OFF) (overridden by 2)

2) MQCNO_ACTIVITY_TRACE connection options specified in an MQCONNX. ACTVCONO

queue manager attribute must be ENABLED for this to be checked, and the default value

is DISABLED. (overridden by 3)

3) Settings in a matching stanza in mqat.ini (located in qm.ini directory)

 For example, you could have the ACTVTRC(OFF), but that is overridden to ON by the

application specifying the MQCNO_ACTIVITY_TRACE_ENABLED option on the

MQCONNX, but that is overridden back to OFF with the mqat.ini having a stanza to turn off

the Activity Trace for this application. The net result is that the Activity Trace if OFF for this

application.

 At MQ v9, the Activity Trace also supports the ability to subscribe to system topics to get

activity trace data. For example, you can use the amqsact program to subscribe for activity

trace messages for a given application name, channel, or connection id. However, this

session will focus on the global approach, as described above.

Capitalware's MQ Technical Conference v2.0.1.7

mqat.ini
#***#

#* Module Name: mqat.ini *#

#* Type : IBM MQ queue manager configuration file *#

Function : Define the configuration of application activity *#

#* trace for a single queue manager. *#

#***#

Global settings stanza, default values

AllActivityTrace:

 ActivityInterval=1

 ActivityCount=100

 TraceLevel=MEDIUM

 TraceMessageData=0

 StopOnGetTraceMsg=ON

 SubscriptionDelivery=BATCHED

Prevent the sample activity trace program from generating data

ApplicationTrace:

 ApplName=amqsact*

 Trace=OFF

Capitalware's MQ Technical Conference v2.0.1.7

mqat.ini – Usage Note

 In order to pick up an mqat.ini change dynamically in a running program, you need to alter a

queue manager attribute (i.e. alter the DESCR field) for the running program to pick up the

change in the mqat.ini file.

 Use Case Example:

You turn on activity tracing for a program named mqapp1 by updating the appropriate stanza

in the mqat.ini file, and then your start the mqapp1 program. After you have collected your

desired activity trace data for mqapp1, you update the mqat.ini file to have the activity trace

turned off for mqapp1. The mqapp1 program also continues to run. However, what you

observe is that the mqapp1 program continues to write out activity trace messages, even

though you turned it off in the mqat.ini file! You then do an alter of a queue manager attribute,

and now the activity trace turns off for the mqapp1 program.

Capitalware's MQ Technical Conference v2.0.1.7

Activity Trace – Viewing the Data

 MS0P supportpac (WebSphere MQ Explorer Extended Management Plug-ins) has an

Application Activity Trace viewer.

 amqsact is an IBM supplied command line tool (sample code also provided) that can read

the messages from the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE and format them into a

human readable text file.

 amqsactz in the MH06 supportpac is a program that takes the amqsact sample code and

provides some of the following enhancements:

1. Includes -r option for application summary reports that show what objects were used, what

channels, what API operations were performed, what reason codes were returned, etc.

2. Generate a trace of one line API calls. This allows you to more easily follow the API flow of

an application. The API data field items that appear in this output can also be customized.

3. Abstraction of connection id for improved readability. The connection id (e.g.

554F108A2061F801) can be hard to read and differentiate in a trace. This feature will

abstract each unique connection id to a more readable number (e.g. 1 instead of

554F108A2061F801) in the trace of one line API calls.

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz - Usage Example

1) Turn on the Activity Trace globally by doing ALTER QMGR ACTVTRC(ON).

2) Let Activity Trace data collect on the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE for

several minutes. We will also use amqsput to generate some PUTs to a TCZ.TEST1

queue.

3) Turn off the Activity Trace by doing ALTER QMGR ACTVTRC(OFF).

Now we will use amqsactz to view the Activity Trace data in three files.

1. amqsactz.out – standard output file with summary reports

2. amqsactz_1LS.out - API one line trace summary file

3. amqsactcz_v.out - verbose file

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz.out

File #1 - Browse messages to create the standard activity trace output file that includes one

line API calls and also various application summary reports at the bottom of the file:

amqsactz -r -b > amqsactz.out

In the amqsactz.out file, there is one record that is printed out per message from the

SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE. Each record will contain all the API calls for a

given application’s connection and for a given time interval.

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz.out – Record Example
MonitoringType: MQI Activity Trace RecordNum: 0

Correl_id:

00000000: 414D 5143 5858 5858 5858 5858 5858 582E 'AMQCXXXXXXXXXXX.'

00000010: 9863 6055 C0EC 0520 '.c`U... '

QueueManager: 'XXXXXXXXXXX.QM1'

Host Name: ‘xxxxxxxxxxx'

IntervalStartDate: '2015-06-02'

IntervalStartTime: '11:50:29'

IntervalEndDate: '2015-06-02'

IntervalEndTime: '11:50:29'

CommandLevel: 800

SeqNumber: 0

ApplicationName: 'amqsput'

Application Type: MQAT_UNIX

ApplicationPid: 6780

UserId: 'mqm'

API Caller Type: MQXACT_EXTERNAL

API Environment: MQXE_OTHER

Application Function: ''

Appl Function Type: MQFUN_TYPE_UNKNOWN

Trace Detail Level: 2

Trace Data Length: 0

Pointer size: 8

Platform: MQPL_UNIX

===

1LS= Rec(0) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:29) Opr(MQXF_CONNX) RC(0) Chl() CnId(98636055C0EC0520)

1LS= Rec(0) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:29) Opr(MQXF_OPEN) RC(0) Chl() CnId(98636055C0EC0520)

HObj(2) Obj(TCZ.TEST1)

===

Capitalware's MQ Technical Conference v2.0.1.7

Application Summary Reports

 Following the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE data in the amqsactz.out file are

the application summary reports (-r option).

1. Application Summary Report

2. Application Objects Referenced Report

3. Application Objects Detail Report

4. Application Channels Referenced Report

5. Application Operations Executed Report

6. Application Operations Options Report

7. Application Operations Reason Code Report

Capitalware's MQ Technical Conference v2.0.1.7

Summary Report

 The Application Summary Report will show how many applications were found in the Activity

Trace data. An application is determined by each unique pid, ApplicationName, and UserId

that is found. This report will also show the how many different threads were detected, and

the overall MQI calls that were made by the application.

==

Application Summary Report

==

Queue Manager Pid ApplicationName UserId Tid Count MQI Count

XXXXXXXXXXX.QM1 6780 amqsput mqm 1 10

XXXXXXXXXXX.QM1 6808 amqsput mqm 1 15

XXXXXXXXXXX.QM1 6813 amqsput mqm 1 13

XXXXXXXXXXX.QM1 28977 runmqtrm mqm 1 7

Capitalware's MQ Technical Conference v2.0.1.7

Objects Referenced Report
 With the Application Objects Referenced report, you can see what objects were referenced

by each application, and how many times.

==

Application Objects Referenced Report

==

Qmgr(XXXXXXXXXXX.QM1) Pid(6780) ApplName(amqsput) UserId(mqm) referenced objects:

 ObjName: TCZ.TEST1 Count: 8

Qmgr(XXXXXXXXXXX.QM1) Pid(6808) ApplName(amqsput) UserId(mqm) referenced objects:

 ObjName: TCZ.TEST1 Count: 13

Qmgr(XXXXXXXXXXX.QM1) Pid(6813) ApplName(amqsput) UserId(mqm) referenced objects:

 ObjName: TCZ.TEST1 Count: 11

Qmgr(XXXXXXXXXXX.QM1) Pid(28977) ApplName(runmqtrm) UserId(mqm) referenced objects:

 ObjName: SYSTEM.DEFAULT.INITIATION.QUEUE Count: 7

Capitalware's MQ Technical Conference v2.0.1.7

Objects Detail Report
==

Application Objects Detail Report

Details included by object are:

1. Operations found, including persistence (NonPrst, Prst, DfltPrst) and total message length data,

where applicable

2. Options found, which include conn, open, get, put, close, callback, sub, subrq

==

Qmgr(XXXXXXXXXXX.QM1) Pid(6780) ApplName(amqsput) UserId(mqm) referenced the following

operations and options by object:

 Object Name: TCZ.TEST1

 Operation: MQXF_CLOSE Count: 1

 Total Duration in Microseconds: 118 Average Duration in Microseconds: 118

 Operation: MQXF_OPEN Count: 1

 Total Duration in Microseconds: 227 Average Duration in Microseconds: 227

 Operation: MQXF_PUT Count: 6

 Total Duration in Microseconds: 10813 Average Duration in Microseconds: 1802

 DfltPrstCount: 6 TotalMessageLength: 30

 Open Options: 8208 Count: 1

 MQOO_OUTPUT

 MQOO_FAIL_IF_QUIESCING

 Put Options: 8260 Count: 6 New at 8.0.0.2!

 MQPMO_NO_SYNCPOINT

 MQPMO_NEW_MSG_ID

 MQPMO_FAIL_IF_QUIESCING

 Close Options: 0 Count: 1

 MQCO_NONE

 MQCO_IMMEDIATE

Capitalware's MQ Technical Conference v2.0.1.7

Operations Reason Code Report

 The Application Operations Reason Code report will show the different reason codes and

counts for each operation that the application executed.

==

Application Operations Reason Code Report

==

Qmgr(XXXXXXXXXXX.QM1) Pid(6780) ApplName(amqsput) UserId(mqm) referenced the following reason

codes by operations:

 Operation: MQXF_CLOSE

 Reason Code: 0 Count: 1

 Operation: MQXF_CONNX

 Reason Code: 0 Count: 1

 Operation: MQXF_DISC

 Reason Code: 0 Count: 1

 Operation: MQXF_OPEN

 Reason Code: 0 Count: 1

 Operation: MQXF_PUT

 Reason Code: 0 Count: 6

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz_1LS.out - API trace

Reminder:

File #1 – We browsed messages to create the standard activity trace output file that

included one line API calls and application summary reports at the bottom of the

file:

amqsactz -r -b > amqsactz.out

File #2 - Now we will create a one line API trace file from this amqsactz.out file:

grep 1LS= amqsactz.out > amqsactz_1LS.out

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz_1LS.out – API trace file

 NOTE: You can customize the fields that appear here with the -f and -g switches to

amzsactz. There are currently 40 fields (i.e. MsgId, Expiry, etc.) to choose from.

1LS= Rec(0) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:29) Opr(MQXF_CONNX) RC(0) Chl() CnId(98636055C0EC0520)

1LS= Rec(0) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:29) Opr(MQXF_OPEN) RC(0) Chl() CnId(98636055C0EC0520) HObj(2)

Obj(TCZ.TEST1)

1LS= Rec(1) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:30.596369) Opr(MQXF_PUT) RC(0) Chl() CnId(98636055C0EC0520)

HObj(2) Obj(TCZ.TEST1)

1LS= Rec(2) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:31.728515) Opr(MQXF_PUT) RC(0) Chl() CnId(98636055C0EC0520)

HObj(2) Obj(TCZ.TEST1)

1LS= Rec(3) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:33.400317) Opr(MQXF_PUT) RC(0) Chl() CnId(98636055C0EC0520)

HObj(2) Obj(TCZ.TEST1)

1LS= Rec(4) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:34.424399) Opr(MQXF_PUT) RC(0) Chl() CnId(98636055C0EC0520)

HObj(2) Obj(TCZ.TEST1)

1LS= Rec(5) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:36.760347) Opr(MQXF_PUT) RC(0) Chl() CnId(98636055C0EC0520)

HObj(2) Obj(TCZ.TEST1)

1LS= Rec(6) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:37.656314) Opr(MQXF_PUT) RC(0) Chl() CnId(98636055C0EC0520)

HObj(2) Obj(TCZ.TEST1)

1LS= Rec(6) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:38) Opr(MQXF_CLOSE) RC(0) Chl() CnId(98636055C0EC0520) HObj(2)

Obj(TCZ.TEST1)

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz_1LS.out – API trace with -u

 NOTE: The -u switch will make the connection id more readable, by changing it from

98636055C0EC0520 to a unique smaller number like 1.

1LS= Rec(0) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:29) Opr(MQXF_CONNX) RC(0) Chl() CnId(1)

1LS= Rec(0) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:29) Opr(MQXF_OPEN) RC(0) Chl() CnId(1) HObj(2) Obj(TCZ.TEST1)

1LS= Rec(1) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:30.596369) Opr(MQXF_PUT) RC(0) Chl() CnId(1) HObj(2) Obj(TCZ.TEST1)

1LS= Rec(2) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:31.728515) Opr(MQXF_PUT) RC(0) Chl() CnId(1) HObj(2) Obj(TCZ.TEST1)

1LS= Rec(3) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:33.400317) Opr(MQXF_PUT) RC(0) Chl() CnId(1) HObj(2) Obj(TCZ.TEST1)

1LS= Rec(4) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:34.424399) Opr(MQXF_PUT) RC(0) Chl() CnId(1) HObj(2) Obj(TCZ.TEST1)

1LS= Rec(5) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:36.760347) Opr(MQXF_PUT) RC(0) Chl() CnId(1) HObj(2) Obj(TCZ.TEST1)

1LS= Rec(6) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:37.656314) Opr(MQXF_PUT) RC(0) Chl() CnId(1) HObj(2) Obj(TCZ.TEST1)

1LS= Rec(6) Pid(6780) Tid(1) Date(2015-06-02) Time(11:50:38) Opr(MQXF_CLOSE) RC(0) Chl() CnId(1) HObj(2) Obj(TCZ.TEST1)

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz_v.out - verbose file

File #3 - Browse messages to create a formatted activity trace output file with

verbose expansion of each API call:

amqsactz -v -b > amqsactz_v.out

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz_v.out – Record Example

 First part of record 0 is similar to the amqsactz.out file (non-verbose).

MonitoringType: MQI Activity Trace RecordNum: 0

Correl_id:

00000000: 414D 5143 5858 5858 5858 5858 5858 582E 'AMQCXXXXXXXXXXX.'

00000010: 9863 6055 C0EC 0520 '.c`U... '

QueueManager: 'XXXXXXXXXXX.QM1'

Host Name: ‘xxxxxxxxxxx'

IntervalStartDate: '2015-06-02'

IntervalStartTime: '11:50:29'

IntervalEndDate: '2015-06-02'

IntervalEndTime: '11:50:29'

CommandLevel: 800

SeqNumber: 0

ApplicationName: 'amqsput'

Application Type: MQAT_UNIX

ApplicationPid: 6780

UserId: 'mqm'

API Caller Type: MQXACT_EXTERNAL

API Environment: MQXE_OTHER

Application Function: ''

Appl Function Type: MQFUN_TYPE_UNKNOWN

Trace Detail Level: 2

Trace Data Length: 0

Pointer size: 8

Platform: MQPL_UNIX

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz_v.out – Record Example

 However, instead of getting a one line data summary of the API call, now each call is

expanded into all the fields that were included in the Activity Trace data for that API call.

Here is the verbose data for the MQCONNX API call.

MQI Operation: 0

 Operation Id: MQXF_CONNX

 ApplicationTid: 1

 OperationDate: '2015-06-02'

 OperationTime: '11:50:29'

 ConnectionId:

 00000000: 414D 5143 5858 5858 5858 5858 5858 582E 'AMQCXXXXXXXXXXX.'

 00000010: 9863 6055 C0EC 0520 '.c`U... '

 QueueManager: 'XXXXXXXXXXX.QM1'

 QMgr Operation Duration: 417

 Completion Code: MQCC_OK

 Reason Code: 0

 Connect Options: 256

Capitalware's MQ Technical Conference v2.0.1.7

amqsactz_v.out – Record Example

 Here is the verbose data for the MQOPEN API call.

MQI Operation: 1

 Operation Id: MQXF_OPEN

 ApplicationTid: 1

 OperationDate: '2015-06-02'

 OperationTime: '11:50:29'

 Object_type: MQOT_Q

 Object_name: 'TCZ.TEST1'

 Object_Q_mgr_name: ''

 Hobj: 2

 QMgr Operation Duration: 227

 Completion Code: MQCC_OK

 Reason Code: 0

 Open_options: 8208 <- Use MQOptions in MH06 supportpac to find constant values for 8208

 Object_type: MQOT_Q

 Object_name: 'TCZ.TEST1'

 Object_Q_mgr_name: ''

 Resolved_Q_Name: 'TCZ.TEST1’

 Resolved_Q_mgr: 'XXXXXXXXXXX.QM1'

 Resolved_local_Q_name: 'TCZ.TEST1‘ <- This would be the XMITQ name for a remote queue

 Resolved_local_Q_mgr: 'XXXXXXXXXXX.QM1'

 Resolved_type: MQOT_Q

 Dynamic_Q_name: 'AMQ.*'

Capitalware's MQ Technical Conference v2.0.1.7

Activity Trace – API Data Structures

 You can get a hex dump of some of the API data structures (i.e. GMO) with an Activity

Trace. The TraceLevel needs to be HIGH to get these data structures in the Activity Trace.

The mqtrcfrmt program in the MH06 supportpac can also format most of these API data

structures into a more human readable format. We will look at a formatted MQGMO data

structure, over the next few slides.

Capitalware's MQ Technical Conference v2.0.1.7

MQGMO expansion with mqtrcfrmt
 MQGMO Structure:

 00000000: 474D 4F20 0000 0004 0200 0005 0000 7530 'GMOu0'

 00000010: 0000 0000 0000 0000 5359 5354 454D 2E4D '........SYSTEM.M'

 00000020: 414E 4147 4544 2E4E 4455 5241 424C 452E 'ANAGED.NDURABLE.'

 00000030: 3535 4246 4233 3635 3230 3030 3443 3033 '55BFB36520004C03'

 00000040: 2020 2020 2020 2020 0000 0003 2020 2000 ' '

 00000050: 55BF B364 0000 0041 0000 0000 0000 0001 'U..d...A........'

 00000060: 0000 0000 0000 0000 0000 0000 0000 0000 '................'

 Getmsgopts expanded (all fields):

 StrucId (CHAR4) : 'GMO '

 x'474D4F20'

 Version (MQLONG) : 4

 x'00000004'

 MQGMO.Options= (MQLONG) : 33554437

 x'02000005'

 Options=MQGMO_WAIT

 Options=MQGMO_NO_SYNCPOINT

 Options=MQGMO_PROPERTIES_FORCE_MQRFH2

 WaitInterval (MQLONG) : 30000

 x'00007530'

 Signal1 (MQLONG) : 0

 x'00000000'

 Signal2 (MQLONG) : 0

 x'00000000'

 ResolvedQName (MQCHAR48) : 'SYSTEM.MANAGED.NDURABLE.55BFB36520004C03 '

Capitalware's MQ Technical Conference v2.0.1.7

MQGMO expansion with mqtrcfrmt
 MQMO.MatchOptions= (MQLONG) : 3

 x'00000003'

 MatchOptions=MQMO_MATCH_MSG_ID

 MatchOptions=MQMO_MATCH_CORREL_ID

 GroupStatus (MQCHAR) : ' '

 x'20'

 GroupStatus MQGS_NOT_IN_GROUP

 SegmentStatus (MQCHAR) : ' '

 x'20'

 SegmentStatus MQSS_NOT_A_SEGMENT

 Segmentation (MQCHAR) : ' '

 x'20'

 Segmentation MQSEG_INHIBITED

 Reserved1 (MQCHAR) : '.'

 x'00'

 MsgToken (MQBYTE16) : x'55BFB364000000410000000000000001'

 ReturnedLength (MQLONG) : 0

 x'00000000'

 Reserved2 (MQLONG) : 0

 x'00000000'

 MsgHandle (MQHMSG) : x'0000000000000000'

Capitalware's MQ Technical Conference v2.0.1.7

Note on Tracing the Message

 Data conversion happens outside of the queue manager. For a bindings (local)

connection, the data conversion happens in the application process. For a client

connection, it could happen in the amqrmppa (channel pooling) process on Linux,

as an example.

 As a consequence, the Application Activity Trace does not show the converted

message on an MQGET, since the data conversion is happening outside of the

queue manager and the Activity Trace runs inside the queue manager.

 strmqtrc “-d all” does show the converted message on an MQGET in its trace,

since it also traces in the application process or the SVRCONN channel process

(e.g. amqrmppa).

Capitalware's MQ Technical Conference v2.0.1.7

Activity Trace – WARNING!

 On three separate occasions over the past several years of using the Activity Trace, I have

run into issues (in Production) where turning on the Activity Trace has caused the queue

manager to hit an internal error and become unstable. The queue manager had to be

restarted to restore service.

 This is a rare occurrence, but it is something to be aware of.

 This type of issue just happened to me recently on Linux (June 2017), and there is an APAR

IT09496 to correct the issue (tentative release schedule for APAR IT09496 below):

 Version Maintenance Level

 v7.5 7.5.0.9

 v8.0 8.0.0.8

 v9.0 CD 9.0.4

 v9.0 LTS 9.0.0.3

Capitalware's MQ Technical Conference v2.0.1.7

Distributed Native Tools

 When you have a difficult MQ application problem to solve, sometimes using some of the

native problem determination tools for your operating system environment can be helpful.

They allow you to “look under the hood” of what the application is doing, and can sometimes

provide some helpful insight.

 UNIX/Linux

1. strace or truss - records system calls of running processes

2. lsof or pfiles - display what files that process has open

 Windows

1. Process Explorer (Windows Sysinternals) - find what files, DLLs, a process has open

2. Process Monitor (Windows Sysinternals) - records real time file system, registry and

process/thread activity.

Capitalware's MQ Technical Conference v2.0.1.7

Questions & Answers

