
MQ Technical Conference v2.0.1.7

MQ Automation: Config
Management using Amazon S3

T.Rob Wyatt

MQ Technical Conference v2.0.1.7

Change is the only constant

This presentation is a snapshot in time as of 27 September 2017.

For the latest version, please check the author’s web page:

https://t-rob.net/links

MQ Technical Conference v2.0.1.7

What is it?

Shell scripting tools

To build queue managers

On Linux

Reliably, repeatably, consistently

With a single command

MQ Technical Conference v2.0.1.7

How to build a queue manager

ksh -c "QMGR=BIRCH;$(curl --stderr /dev/null
https://mqtc.s3.amazonaws.com/MQTC-SCRIPTS/s3-bootstrapmq.ksh)"

MQ Technical Conference v2.0.1.7

Session is companion guide to the scripts
 Much of the session will be live demo

 Yes, the scripts are really that trustworthy

 This deck is meant as companion notes/docs for the scripts, not as a
stand-alone tutorial. Go get the scripts!

 Download the scripts to your UNIX/Linux VM, workstation, or server using
the commands you find a few slides down.

 Feel free to keep using these (scripts and templates will be read-only) or
set up your own S3 bucket and try creating your own configurations.

MQ Technical Conference v2.0.1.7

This is only a bite-size chunk!

This session focuses entirely on build-time tasks because that’s where many
defects are introduced. However, a big part of the reason to do this is the
benefit to day-to-day run-time tasks, and decommissioning assets at the end
of their lifecycle (whether due to migration or sunsetting).

Having a system of record for the MQ configuration and reconciling back to it
on-demand and in real time helps to find organic configuration “drift,”
provides intrusion detection capabilities, and greatly reduces the burden of
audit proof.

MQ Technical Conference v2.0.1.7

MQ Technical Conference v2.0.1.7

Why?
 Because any system that relies primarily on human vigilance as a control

will eventually fail.

 To reduce the incremental cost of building a new queue manager to exact
specifications, including monitoring agents and certificates, to near zero.

 To reduce defects to near zero.

 To reduce request servicing time to near zero.

 To reduce the skill threshold required to perform routine tasks.

 To better manage the scale and dynamicity of cloud and virtual
environments.

 To shift MQ Admin time away from tactical triage tasks to focus more on
strategic tasks.

MQ Technical Conference v2.0.1.7

Design goals
 Minimal prereqs to set up host image

 Ksh, curl, openssl, and MQ installed
 AWS key so that files need not be made public access.

 Single command populates config files and builds queue manager

 Cache configuration files locally in case remote access fails

 Facilitate automation of entire QMgr life cycle

 Make metadata about build spec queryable by instrumentation

 Proof of concept with low-cost, ubiquitous, Amazon S3 hosting

 Highly portable across Linux/UNIX platforms

 Multi-step self-signed cert distribution and other workflows supported

 Automatically capture logs of all activity in the tool

MQ Technical Conference v2.0.1.7

Yes, its in Production

Customized versions of these scripts are currently running in Production at
several Fortune 500 companies who are current or former clients. Thousands
of queue managers have been built.

This is a sanitized version of those same tools, stripped-down for classroom
use. In particular, this is limited to build-time tasks and configured to create a
cluster on a single host.

Missing from this session are run-time scripts that compare the as-specified
configuration to the as-running configuration and report on discrepancies.
This can be helpful for intrusion detection, audit proof, or to help identify the
source of configuration “drift” in shops with delegated admin control.

MQ Technical Conference v2.0.1.7

MQ Technical Conference v2.0.1.7

Before building one or more QMgrs…

 UNIX/Linux with modern ksh or bash, plus curl and openssl

 MQ has been installed

 Entries for the QMgrs to be built are defined in the configuration file on S3

 The necessary baseline and pattern files exist on S3

MQ Technical Conference v2.0.1.7

Manual setup to run Proof of Concept
Amazon Web Services IAM users are provisioned with public and secret keys
that allow fine-grained permissions to be granted on S3 files.

These IAM keys cannot be distributed by the bootstrap script since its
components would then be required to be world-readable. Ordinarily, these
static artifacts are provisioned using the cloud or virtualization automation.

For purposes of this session, if you want to run the scripts you will be
required to manually create the key files used by the scripts. These will be
read by the scripts to sign S3 requests and format headers.

mkdir ~/.aws
cd ~/.aws
echo mqtc >.awsbucket
echo AKIAJHSJBNHSOVAVAVWQ >.awsid
echo "j6/WAqAkmcBc0NCxIPTED6dnj7SmN/OStlZu2Ou/" >.awskey
echo us‐east‐1 >.awsregion
cd

MQ Technical Conference v2.0.1.7

Work in progress
Most of the work in preparing for this session was in sanitizing the scripts
and documentation to remove confidential client information, names and
details. As a result, some sections are pretty bare. I’ll continue to update the
scripts and templates until things like pattern files are more representative.

Currently the cluster pattern doesn’t build. The versions in Prod all rely on
signed certificates so are able to deploy a static set of signer certs to make it
all work. I started converting for self-signed but there is no good way to
demo that. Instead, I’ll build CA automation into one of the repositories. At
that time I’ll fix the cluster AUTHREC entries and channels properly.

All of this needs to be completed before IBM Think, if they accept my session
proposals, so it *will* get done. ;-)

MQ Technical Conference v2.0.1.7

MQ Technical Conference v2.0.1.7

After the <enter> key
 Name of QMgr to be built is passed to a KSH session
 Bootstrap script is downloaded by curl and piped to the same ksh session
 The bootstrap script calls the sync script that builds the directory

structure, downloads the script files and templates
 After the first run, the local cache holds the last known configuration and script set
 This and other scripts always try to refresh the cache before proceeding.

 The bootstrap script resumes and checks the configuration file integrity
 The queue manager is built

 The ini file is edited as part of the baseline. Sorry, ini file tuning for patterns is not
(yet?) in this toolset. Obviously since tuning is what patterns are about, it will be
required and so I’ll add it soon.

 The baseline configuration is applied
 The pattern configuration is applied

 The QMgr certificate or cert request file is loaded to S3
 The local log file is uploaded to S3

MQ Technical Conference v2.0.1.7

MQ Technical Conference v2.0.1.7

Local directory structure
.__MQTC‐CERT
|__MQTC‐CERTTEMP
|__MQTC‐LOGS
|__MQTC‐SCRIPTS
| |__s3‐bootstrapmq.ksh
| |__s3sync.ksh
| | # s3‐bash library
| |__s3‐common‐functions
| |__s3‐delete
| |__s3‐get
| |__s3‐put
|
|__MQTC‐TEMPLATES
| |__MQTCBASE.8007.v01.ini
| |__MQTCPATT.8007.v01.ini
| |__qmgrs.ini
|
|__~mqm
| |__.aws
| | |__.awsbucket
| | |__.awsid
| | |__.awskey
| | |__.awsregn

Approved Certificates
Temporary holding area for new certs
Log files from script runs
Scripts go here
Builds QMgrs from central spec files
Initialize, sync local files from S3
External package for s3 functions
S3‐bash core library functions
S3‐bash deletion script
S3‐bash get to stdout
S3‐bash put a file to S3

Configuration specifications
MQ v1 Baseline for MQ v8.0.0.7
MQ v1 Pattern for MQ v8.0.0.7
QMgr instance definitions

Admin or mqm home directory
Hidden AWS directory. Owner‐read only.
AWS S3 Bucket Name
AWS S3 Public ID for user
AWS S3 secret key for user
AWS S3 hosting region

These are built by the
sync script

These are provisioned
into the host image.
Or in our case, you
manually create them
as part of the
exercise.

MQ Technical Conference v2.0.1.7

To obtain the scripts
Paste the following into a Linux session while logged in as mqm:

mkdir ~/.aws
cd ~/.aws
echo mqtc >.awsbucket
echo AKIAJHSJBNHSOVAVAVWQ >.awsid
echo "j6/WAqAkmcBc0NCxIPTED6dnj7SmN/OStlZu2Ou/" >.awskey
echo us‐east‐1 >.awsregion
cd

Run the following command:

ksh -c "$(curl --stderr /dev/null https://mqtc.s3.amazonaws.com/MQTC-
SCRIPTS/s3sync.ksh)"

I’ll post them to Github when I get them fleshed out a bit more.

MQ Technical Conference v2.0.1.7

Open Source
The scripts use the s3-bash4 library maintained by Chi Vinh Le on Github:
https://github.com/wikiwi/s3-bash4

The author writes:

s3-bash4 is a small collection of Bash scripts to do simple interaction with Amazon S3
using AWS Signature Version 4. The advantage of using s3-bash4 is that it's extremely
lightweight and easy to use. No need to setup Python, Java, Ruby and co.

This is inspired by the discontinued s3-bash from cosmin. I was in need of a Bash version
that supports the newer AWS Signature Version 4.

S3-bash4 is available under an Apache license.

Note: The version of the scripts used here has been modified to include an
ACL that gives the bucket owner full control of files uploaded to S3. The
modifications have not been integrated into the original source at this time.

MQ Technical Conference v2.0.1.7

S3 Bucket policies
"Version": "2012-10-17",

"Statement": [
{

"Sid": "mqtc-user-get",
"Effect": "Allow",
"Principal": {

"AWS": "arn:aws:iam::{my S3 ID here}:user/mqtc"
},
"Action": "s3:GetObject",
"Resource": [

"arn:aws:s3:::mqtc/MQTC-SCRIPTS/*",
"arn:aws:s3:::mqtc/MQTC-TEMPLATES/*",
"arn:aws:s3:::mqtc/MQTC-CERT/*"

]
},
{

"Sid": "mqtc-user-put-logs-certs",
"Effect": "Allow",
"Principal": {

"AWS": "arn:aws:iam::{my S3 ID here}:user/mqtc"
},
"Action": "s3:PutObject",
"Resource": [

"arn:aws:s3:::mqtc/MQTC-LOGS/*",
"arn:aws:s3:::mqtc/MQTC-CERTTEMP/*"

],
"Condition": {

"StringEquals": {
"s3:x-amz-acl": "bucket-owner-full-control"

}
}

},

Make sure our lab user can access all these files.
Note that CERTTEMP and LOGS are omitted
because ordinary users should not normally be
able to read all those files.

This allows the MQTC lab user to upload log files
and raw certificate files for processing. The
Condition statement makes sure that the bucket
owner has full access to the files which is not the
default.

MQ Technical Conference v2.0.1.7

S3 Bucket policies
{

"Sid": "deny-other-actions",
"Effect": "Deny",
"NotPrincipal": {

"AWS": "arn:aws:iam::{my S3 ID here}:root"
},
"NotAction": [

"s3:PutObject",
"s3:PutObjectAcl"

],
"Resource": [

"arn:aws:s3:::mqtc/MQTC-LOGS/*",
"arn:aws:s3:::mqtc/MQTC-CERTTEMP/*"

]
}

]
}

This says that if you are not the bucket owner, and
you try to do something that is not PUT an object
or the ACL that lets the bucket owner read the
object, and you are trying to do it in the logs or
cert temp directory, the action is rejected.

This ensures that only the bucket owner and object
owner can read uploaded log or certificates.
That’s a lot more significant when different people
or different departments work from different S3
user IDs.

MQ Technical Conference v2.0.1.7

Tutorials and more
People kept asking where to find the slides, videos. Here ya go…

 YouTube tutorials: https://www.youtube.com/tdotrob

 Twitter
 @deepqueue (MQ & security)
 @tdotrob (MQ & security + politics, humor, autism)

 LinkedIn: https://www.linkedin.com/in/tdotrob/

 Blogging on general IT, security, malvertising. How to hire me:
https://ioptconsulting.com

 MQ web site and blog: https://t-rob.net (Slides are uploaded here)

All my web sites are linked together in the nav bar. Go to Ask-An-Aspie for
autism content, or The Odd is Silent for everything that’s not autism or IT.

MQ Technical Conference v2.0.1.7

Questions & Answers

