
MQ Technical Conference v2.0.1.7

Introduction to JSONIntroduction to JSON

Roger Lacroix
roger.lacroix@capitalware.com

http://www.capitalware.com

MQ Technical Conference v2.0.1.7

What is JSON?

JSON: JavaScript Object Notation.

JSON is a simple, text-based way to store and
transmit structured data. By using a simple syntax,
the user can easily store anything from a single
number through to strings, arrays, and objects
using nothing but a string of plain text. You can also
nest arrays and objects, allowing you to create
complex data structures.

MQ Technical Conference v2.0.1.7

What is JSON?

JSON is a syntax for storing and exchanging data.

JSON is text (no binary data).

JSON is a lightweight data-interchange format

JSON is "self-describing" and easy to understand

JSON is language independent.

MQ Technical Conference v2.0.1.7

Why use JSON?

Since the JSON format is text only, it can easily be
sent to and from a server, and used as a data
format by any programming language.

For IBM MQ, setting the message's Format attribute
to 'MQSTR' (String) then when the receiving
application performs an 'MQGET with Convert', MQ
will convert the text from one CCSID to another
CCSID. i.e. ASCII to EBCDIC

MQ Technical Conference v2.0.1.7

JSON is NOT

Overly Complex

A 'document' format

A markup language

A programming language

MQ Technical Conference v2.0.1.7

JSON Syntax

MQ Technical Conference v2.0.1.7

JSON Syntax Rules

Data is in name/value pairs

Data is separated by commas

Curly braces hold objects i.e. { }

Square brackets hold arrays i.e. []

MQ Technical Conference v2.0.1.7

JSON Object Syntax

Unordered sets of name/value pairs

Starts with { (left brace)

Ends with } (right brace)

Each name is followed by : (colon) and then its value

Name/value pairs are separated by , (comma)

MQ Technical Conference v2.0.1.7

JSON Data - A Name and a Value

JSON data is written as name/value pairs.

A name/value pair consists of a field name (in
double quotes), followed by a colon, followed by a
value:

Example

{ "name" : "John" }

MQ Technical Conference v2.0.1.7

JSON Arrays

An ordered collection of values

Starts with [(left bracket)

Ends with] (right bracket)

Name/value pairs are separated by , (comma)

MQ Technical Conference v2.0.1.7

JSON Array Example

{

 "name" : "John",

 "cars" : ["Ford", "BMW", "Fiat"]

 }

MQ Technical Conference v2.0.1.7

JSON Data Types

MQ Technical Conference v2.0.1.7

JSON Values
In JSON, values must be one of the following data types:

 a string
 a number
 an object (JSON object)
 an array
 a boolean
 null

JSON values cannot be one of the following data types:
 a function
 a date
 undefined

MQ Technical Conference v2.0.1.7

JSON Strings

Strings in JSON must be written in double quotes.

Example

{ "name" : "John" }

MQ Technical Conference v2.0.1.7

JSON Numbers

Numbers in JSON must be an integer or a floating
point.

Example

{ "age" : 30 }

MQ Technical Conference v2.0.1.7

JSON Objects

Values in JSON can be objects.

Example

{

"employee" : { "name" : "John", "age" : 30, "city" : "New York" }

}

MQ Technical Conference v2.0.1.7

JSON Arrays

Values in JSON can be arrays.

Example

{

"employees" : ["John", "Anna", "Peter"]

}

MQ Technical Conference v2.0.1.7

JSON Booleans

Values in JSON can be true or false.

Example

{ "sale" : true }

MQ Technical Conference v2.0.1.7

JSON null

Values in JSON can be null.

Example

{ "middlename" : null }

MQ Technical Conference v2.0.1.7

Nested JSON Objects
Values in a JSON object can be another JSON object.

Example

myObj = {

 "name":"John",

 "age":30,

 "cars" : {

 "car1" : "Ford",

 "car2" : "BMW",

 "car3" : "Fiat"

 }

 }

x = myObj.cars["cars2"];

MQ Technical Conference v2.0.1.7

Arrays in JSON Objects

Arrays can be values of an object property:

Example

myObj = {

 "name" : "John",

 "age" : 30,

 "cars" : ["Ford", "BMW", "Fiat"]

}

x = myObj.cars[0];

MQ Technical Conference v2.0.1.7

Nested Arrays in JSON Objects
Values in an array can also be another array, or even another JSON object:

Example

myObj = {

 "name" : "John",

 "age" : 30,

 "cars" : [

 { "name" : "Ford", "models":["Fiesta", "Focus", "Mustang"] },

 { "name" : "BMW", "models" : ["320", "X3", "X5"] },

 { "name" : "Fiat", "models" : ["500", "Panda"] }

]

 }

To access arrays inside arrays, use a for-in loop for each array:

for (i in myObj.cars) {

 x += "<h1>" + myObj.cars[i].name + "</h1>";

 for (j in myObj.cars[i].models) {

 x += myObj.cars[i].models[j];

 }

}

MQ Technical Conference v2.0.1.7

JSON Data Example

MQ Technical Conference v2.0.1.7

JSON vs XML
Both JSON and XML can be used as a data format

when sending/receiving data between servers.

The following JSON and XML examples both defines
an employees object, with an array of 3 employees:

MQ Technical Conference v2.0.1.7

JSON vs XML
{"employees": [
 { "firstName":"John", "lastName":"Doe" },
 { "firstName":"Anna", "lastName":"Smith" },
 { "firstName":"Peter", "lastName":"Jones" }
]
}

<employees>
 <employee>
 <firstName>John</firstName> <lastName>Doe</lastName>
 </employee>
 <employee>
 <firstName>Anna</firstName> <lastName>Smith</lastName>
 </employee>
 <employee>
 <firstName>Peter</firstName> <lastName>Jones</lastName>
 </employee>
</employees>

MQ Technical Conference v2.0.1.7

JSON vs XML

JSON is like XML because:
 Both JSON and XML are "self describing"

(human readable)
 Both JSON and XML are hierarchical (values

within values)
 Both JSON and XML can be parsed and used by

lots of programming languages

MQ Technical Conference v2.0.1.7

JSON vs XML

JSON is unlike XML because:
 JSON doesn't use end tag
 JSON is shorter
 JSON is quicker to read and write
 JSON can use arrays

MQ Technical Conference v2.0.1.7

JSON vs XML

Since XML is widely used as data interchange
format, we will try to draw a comparison between
them. The purpose of the comparison is not to
determine which is better but rather we will try to
understand which one is suitable for storing specific
kind of data.

MQ Technical Conference v2.0.1.7

JSON vs XML

XML is more expressive than JSON. XML
sometimes also suffers from using tags repeatedly,
where as JSON is much more concise.

XML is more complex than JSON.

JSON lacks namespaces

There are several specifications to define
schema(metadata) for XML, for example DTD and
XSD. JSON schema is available but is not as
widely used as XML schemas.

MQ Technical Conference v2.0.1.7

JSON vs XML
XML and JSON can be used with most of the programming

languages. The problem comes when matching XML tags used by
one system may be different in another system, hence, XML data
will require transformation. i.e. <FirstName> vs <first_name>. In
the case of JSON, since objects and arrays are basic data
structures used, it is easy to work with them in programs.

For selecting specific parts of an XML document, there is standard
specification called XPath. This is widely used. In JSON, we have
JSONPath to do the same, but it is not widely used.

XML has Xquery specification for querying XML data. JSON does
have JAQL, JSONiq etc, but they are not in use widely.

XML has XSLT specification which may be used to apply a style to
an XML document. JSON does not have any such thing.

MQ Technical Conference v2.0.1.7

JSON vs XML
Favor XML over JSON when any of these is true:

 You need message validation
 You're using XSLT
 Your messages include a lot of marked-up text
 You need to inter-operate with environments that

don't support JSON

Favor JSON over XML when all of these are true:
 Messages don't need to be validated
 You're not transforming messages
 Your messages are mostly data, not marked-up text
 The messaging endpoints have good JSON tools

MQ Technical Conference v2.0.1.7

Java and JSON
JEE (Java Enterprise Edition) includes a JSON parser.

https://docs.oracle.com/javaee/7/tutorial/jsonp001.htm

JSE (Java Standard Edition) does not include a JSON
parser.

I suggest you use the Google-Gson parser for JSE
projects.

https://github.com/google/gson

https://en.wikipedia.org/wiki/Gson

https://github.com/google/gson/blob/master/UserGuide.md

https://github.com/google/gson
https://en.wikipedia.org/wiki/Gson

MQ Technical Conference v2.0.1.7

Questions & Answers

