
Capitalware's MQ Technical Conference v2.0.1.6 Capitalware's MQ Technical Conference v2.0.1.6

MQ Data Conversion and

MH06

Tim Zielke

Capitalware's MQ Technical Conference v2.0.1.6

Introduction and Agenda

My Background:

• I have been in IT for 19 years with Hewitt Associates/Aon

• First 13 years mainly on the mainframe COBOL application side

• Last 6 years as a CICS/MQ systems programmer

Session Agenda:

• Main Pieces of Data Conversion (CCSID and Encoding)

• What Gets Converted and How

• Procedural (C) and Object-Oriented (Java) Data Conversion Examples

• Data Conversion Debugging With Tracing and MH06

• MH06 Data Conversion Tracing Tool - Message Parsing

Capitalware's MQ Technical Conference v2.0.1.6

Data Conversion Sources

The data conversion information for much of this session was gleaned from the

following two sources:

1) “Data Conversion Under WebSphere MQ” - IBM document that covers MQ data

conversion in great detail.

2) IBM MQ Manual

Capitalware's MQ Technical Conference v2.0.1.6

What is Data Conversion?

Data conversion is basically the process that MQ uses to ensure data is accurately

reflected on a given system. Not all systems “talk the same language”. Just as a

book needs to be translated between an English and Spanish reader, data

sometimes needs to be converted between different systems (z/OS vs. Solaris) to

be understood correctly.

Example:

On z/OS (EBCDIC), the message string “fox” is represented as “fox” = x’8696A7’,

since f = 86, o = 9F, x = A7 in EBCDIC.

On Solaris (ASCII), the message string “fox” is represented as “fox” = x’666F78’,

since f = 66, o = 6F, x = 78 in ASCII.

Capitalware's MQ Technical Conference v2.0.1.6

Main Pieces of Data Conversion

The following message descriptor fields are the main pieces that are used in data

conversion.

 CCSID – Coded Character Set Id or code pages that assign glyphs (e.g. A) to

decimal values (e.g. x’41’)

 Encoding – The method that a platform (specifically a CPU) uses to represent

numeric data. The x86 processor is little endian, and the SPARC processor is big

endian.

Capitalware's MQ Technical Conference v2.0.1.6

CCSID – Code Page

 The Coded Character Set ID (CCSID) or Code Page is a table of assigning glyphs to a

number (e.g. the letter A is assigned to decimal 65 or x’41’ in ASCII).

 Common CCSIDs:

a) 437 - ASCII single byte code page used mainly under OS/2, DOS, and Microsoft Windows

console (OEM) windows.

b) 819 - ISO 8859-1 standard Western European ASCII single byte code page. Used

commonly on Unix.

c) 037 - EBCDIC single byte code page on z/OS mainframe. “US English” EBCDIC code

page.

d) 1208 - UTF-8. An encoding of Unicode which is variable in length from 1 to 4 bytes.

e) 1200 - UTF-16. An encoding of Unicode which uses a 16 bit integer (2 bytes) to represent

up to 64 thousand characters (UCS-2), and a further million using 2 bytes from the

‘surrogate’ range. Surrogate pairs have 4 bytes.

NOTE:

 Unicode is a computing industry standard for the consistent encoding, representation, and

handling of text expressed in most of the world's writing systems.

 MQ v9 supports UTF-16. Before, MQ only supported the UCS-2 subset (2 bytes) of UTF-16.

Capitalware's MQ Technical Conference v2.0.1.6

CCSID - Example #1

437 (ASCII) - “fox” = x’666F78’, since f = 66, o = 6F, x = 78

819 (ASCII) - “fox” = x’666F78’, since f = 66, o = 6F, x = 78

1208 (ASCII) - “fox” = x’666F78’, since f = 66, o = 6F, x = 78

1200 (ASCII) - “fox” = x’0066006F0078’, since f = 0066, o = 006F, x = 0078

37 (EBCDIC) - “fox” = x’8696A7’, since f = 86, o = 9F, x = A7

NOTES:

1) Pure ASCII data (7 bits or x’00-x’7F’) does not need to convert between most ASCII based

code pages.

2) Code pages do not always match. You can not take the “fox” message that is encoded in

ASCII on Unix, and expect a program on z/OS (EBCDIC) to be able to read it

unconverted. It first needs to be converted from something like 819 (ASCII) to 37

(EBCDIC).

Capitalware's MQ Technical Conference v2.0.1.6

CCSID - Example #2

437 (ASCII) - “niño” = x’6E69A46F’, since n=6E, i=69, ñ=A4, o=6F

819 (ASCII) - “niño” = x’6E69F16F’, since n=6E, i=69, ñ=F1, o=6F

1208 (ASCII) - “niño” = x’6E69C3B16F’, since n=6E, i=69, ñ=C3B1, o=6F

1200 (ASCII) - “niño” = x’006E006900F1006F’, since n=006E, i=0069, ñ=00F1, o=006F

37 (EBCDIC) - “niño” = x’95894996’, since n=95, i=89, ñ=49, o=96

NOTES:

1) ñ is a non-ASCII character since its byte representation does not fall between the 7 bit

range of x’00-x’7F’ for ASCII based code pages. Remember 37 (EBCDIC) is not ASCII

based, so ñ=49 does not count!

2) None of these code pages completely match for niño, since non-ASCII bytes are in use.

The need for data conversion is more in play with non-ASCII bytes in an ASCII based

code page.

Capitalware's MQ Technical Conference v2.0.1.6

Encoding

Encoding is the method that the platform (CPU) uses to represent numeric data.

 Little Endian is used by the x86 processor. It means the least significant digits

appear in the lower memory locations. The number 437 = X’000001BF’ would

appear as X‘BF010000’ in a memory dump. It would appear “reversed”.

 Big Endian is used by most processors (e.g. SPARC). It means the most

significant digits appear in the lower memory locations. The number 437 =

X’000001BF’ would appear as X’000001BF’ in a memory dump. It would appear

“normal”.

NOTES:

1) For the most part, you do not have to be concerned with Encoding for data

conversion. For example, MQFMT_STRING messages would almost never

involve Encoding for data conversion (1200/UTF-16 would be a rare exception).

2) For messages where Encoding would matter (e.g. PCF messages), you can

usually just let the defaults handle the setting of this field.

Capitalware's MQ Technical Conference v2.0.1.6

Encoding Example

On SPARC (big endian) processor:

1200 (ASCII) - “fox” = x’0066006F0078’, since f = 0066, o = 006F, x = 0078

On x86 (little endian) processor:

1200 (ASCII) - “fox” = x’66006F007800’, since f = 6600, o = 6F00, x = 7800

NOTES:

1) The encoding of the processor is coming into play. Since these “fox” characters in 1200

(UTF-16) are each represented by a 2 byte numeric number, the different encoding

schemes (big endian vs. little endian) of the processors are changing the order of the two

bytes that represent a character.

2) Encoding is technical and complicated. However, it is still good to be aware of its

existence and implications.

Capitalware's MQ Technical Conference v2.0.1.6

Other MQ Fields Considerations

 Format (e.g. MQFMT_STRING) is part of the message descriptor and is a name

that the sender of a message uses to indicate to the receiver the nature of the

data in the message. MQFMT_NONE means the nature of the data is undefined.

MQ will not convert a message with this format, even if it is requested by the

receiving application (e.g. MQGMO_CONVERT option).

 BufferLength and message data length must not be zero for MQGET with

MQGMO_CONVERT, for application message data to be converted.

 MQGET(Hcon, /* connection handle */

 Hobj, /* object handle */

 &md, /* message descriptor */

 &gmo, /* get message options */

 buflen, /* buffer length */ <-----

 buffer, /* message buffer */

 &messlen, /* message length */ <-----

 &CompCode, /* completion code */

 &Reason); /* reason code */

Capitalware's MQ Technical Conference v2.0.1.6

What Gets Converted, and How

 (Automatically by MQ) - MQ will negotiate the proper CCSID and Encoding that

will be used for channel communication. This may cause implicit data conversion

on things like channel control blocks (e.g. TSH – Transmission Segment Header)

and the message descriptor portion (e.g. Expiry, Priority, etc.) of messages.

 (Determined by Admin/Programmer) – The user portion of the of the message (i.e.

message data).

1) The message data conversion can happen at the SENDER channel end with the

CONVERT(YES) channel attribute. The message data is then converted to the

CCSID and Encoding of the target queue manager. This data conversion

approach is not recommended.

2) The message data conversion can also happen on the MQGET with the

MQGMO_CONVERT option. This data conversion approach of “Receiver

makes good” or converting on the MQGET end by the application is

recommended.

Capitalware's MQ Technical Conference v2.0.1.6

C PUT of String Message

For the C language, the MQMD.CodedCharSetId and MQMD.Encoding need to accurately

reflect the MQFMT_STRING message data in an MQPUT. The programmer is responsible to

make sure these fields are accurately set before the MQPUT.

explicitly set CCSID and Encoding before PUT

if local connection, MQCCSI_Q_MGR resolves to queue manager CCSID

md.CodedCharSetId = MQCCSI_Q_MGR;

md.Encoding = MQENC_NATIVE;

MQPUT

(Hcon, /* conn handle */

 Hobj, /* obj handle */

 &md, /* msg desc */

 &pmo, /* put msg opt */

 messlen, /* msg length */

 buffer, /* msg buffer */ <- data must be in qmgr CCSID!

 &CompCode, /* comp code */

 &Reason); /* reason code */

Capitalware's MQ Technical Conference v2.0.1.6

Java PUT of String Message

For using IBM MQ Classes for Java, a Java String is encoded in UTF-16. Since the String

has an inherit CCSID, you can ask Java to convert the string to another CCSID on the Put.

 String str1 = “blah”; <- Contains string data in UTF-16

 int openOptions = MQConstants.MQOO_OUTPUT;

 MQPutMessageOptions pmo = new MQPutMessageOptions();

 MQMessage msg = new MQMessage();

 msg.format = MQConstants.MQFMT_STRING;

 msg.characterSet = 37; <- 37 is EBCDIC

 msg.writeString(str1); <- Converts str1 to EBCDIC

 queue.put(msg, pmo); <- Message is now on the queue as EBCDIC!

Capitalware's MQ Technical Conference v2.0.1.6

C GET of String Message

For the C language, the MQFMT_STRING message will be converted on a GET if the

MQGMO_CONVERT option is specified and the input CodedCharSetId or Encoding on the

GET does not match the CodedCharSetId or Encoding of the message.

explicitly set CCSID and Encoding before GET

if local connection, MQCCSI_Q_MGR resolves to queue manager CCSID

gmo.Options = MQGMO_CONVERT;

md.CodedCharSetId = MQCCSI_Q_MGR;

md.Encoding = MQENC_NATIVE;

MQGET(Hcon, /* conn handle */

 Hobj, /* obj handle */

 &md, /* msg desc */

 &gmo, /* get msg opt */

 buflen, /* buffer len */

 buffer, /* msg buffer */

 &messlen, /* msg length */

 &CompCode, /* comp code */

 &Reason); /* reason code */

Capitalware's MQ Technical Conference v2.0.1.6

Java GET of String Message

For using IBM MQ Classes for Java, you do not need to set the MQGMO_CONVERT option,

as Java can convert the message for you. For the below example, we will assume our

message is in EBCDIC (CCSID 37) on the queue.

int openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF;

MQQueue queue = qMgr.accessQueue(qName, openOptions);

MQMessage rcvMessage = new MQMessage();

//No MQGMO_CONVERT specified

MQGetMessageOptions gmo = new MQGetMessageOptions();

//Unconverted GET and then Java converts from EBCDIC to UTF-16

//when the Java String is built

queue.get(rcvMessage, gmo);

int length = rcvMessage.getDataLength();

String msgText = rcvMessage.readStringOfByteLength(length);

Capitalware's MQ Technical Conference v2.0.1.6

Other Java Considerations

 Using byte arrays instead of Strings to store message data will result in Java MQ

programming working more like the C procedural approach. This has the potential benefit of

improving performance due to less data conversion, but also can add programming

complexity.

 For an MQ Java program that wants to read data from a file (UTF-8) into a String (UTF-16)

and put that data to a message, note that there is a potential data conversion from reading

the data from the file.

File f = new File(“myfile.txt”);

FileInputStream fis = new FileInputStream(f);

Case #1 – Java assumes file is in the CCSID of JVM default charset

InputStreamReader isr = new InputStreamReader(fis);

Case #2 – Java is explicitly told file in the CCSID of UTF-8

Charset charset = Charset.forName(“UTF-8”);

InputStreamReader isr = new InputStreamReader(fis, charset);

Capitalware's MQ Technical Conference v2.0.1.6

Client and Other Considerations

 With local (bindings) connections, MQCCSI_Q_MGR refers to the CCSID of the

queue manager on a PUT/GET. However, in a client application,

MQCCSI_Q_MGR refers to the CCSID of the application locale, not the CCSID of

the remote queue manager.

 Data conversion for the client normally happens on the queue manager side.

However, certain configurations (e.g. AMS) can cause data conversion to happen

on the client side.

 Data conversion happens outside of the queue manager. For a bindings (local)

connection, the data conversion happens in the application process. For a client

connection, it usually happens in the amqrmppa (channel pooling process)

process. As a note, the Application Activity Trace can not report data conversion

on an MQGET, since the data conversion is happening outside of the queue

manager.

Capitalware's MQ Technical Conference v2.0.1.6

Data Conversion Debugging Tools

 strmqtrc distributed tracing will capture the message after it has been converted. It will show

you both the input and output CodedCharSetId and Encoding on an MQPUT or MQGET,

and other key fields like the Format of the message. It can also trace the message contents

providing both a hex and text dump of the message. For z/OS, the API trace can provide

similar information.

 MH06 Trace Tools supportpac provides a tool called mqtrcfrmt that can make a strmqtrc or

z/OS API trace much more readable by converting the hex dumps of MQ data structures

(e.g. MQMD, MQGMO, etc.) to human readable fields. Very helpful for reading traces!

Linux x86, Solaris SPARC, and Windows executables are provided. NOTE: mqtrcfrmt has

only been tested with tracing on these platforms.

 Java tracing can also be used for Java applications. For using IBM MQ Classes for Java,

remember that the MQMessage characterSet variable plays a role in the data conversion.

 mqcpcnvt is a free program available on the Capitalware web site. It allows you to see how

message data at the byte level converts between different code pages. For example, how

would the ® symbol (x’AE’ in 819) convert from 819 to 1208 (x’C2AE’ in 1208).

Capitalware's MQ Technical Conference v2.0.1.6

Example using strmqtrc and MH06

Example: A developer reports that their local C application named mqget1 is having issues

getting EBCDIC (37) messages from a queue and converting them to ASCII (819). When the

application receives the messages, they are still in EBCDIC. The following trace approach

can be used to further investigate the issue.

1) Use strmqtrc to collect an API trace of this mqprog1 application.

> strmqtrc -m qmgr1 -t api -d all -p mqget1

2) On Unix platforms, use dspmqtrc to format the trace.

> dspmqtrc AMQ1234.0.TRC > AMQ1234.0.FMT

3) Use mqtrcfrmt in MH06 to provide more formatting of trace

> mqtrcfrmt AMQ1234.0.FMT AMQ1234.0.FMT2

Capitalware's MQ Technical Conference v2.0.1.6

strmqtrc GMO without MH06
 08:51:47.841950 22861.1 MQGET >>

 .

 .

 08:51:47.841995 22861.1 Getmsgopts:

 08:51:47.841999 22861.1 0x0000: 474d4f20 00000001 00002002 00000000 |GMO`.....|

 08:51:47.841999 22861.1 0x0010: 00000000 00000000 54435a2e 54455354 |........TCZ.TEST|

 08:51:47.841999 22861.1 0x0020: 31202020 20202020 20202020 20202020 |1 |

 08:51:47.841999 22861.1 0x0030: 20202020 20202020 20202020 20202020 | |

 08:51:47.841999 22861.1 0x0040: 20202020 20202020 | |

Capitalware's MQ Technical Conference v2.0.1.6

strmqtrc GMO with MH06
 08:51:47.841950 22861.1 MQGET >>

 .

 .

 08:51:47.841995 22861.1 Getmsgopts:

 08:51:47.841999 22861.1 0x0000: 474d4f20 00000001 00002002 00000000 |GMO`.....|

 08:51:47.841999 22861.1 0x0010: 00000000 00000000 54435a2e 54455354 |........TCZ.TEST|

 08:51:47.841999 22861.1 0x0020: 31202020 20202020 20202020 20202020 |1 |

 08:51:47.841999 22861.1 0x0030: 20202020 20202020 20202020 20202020 | |

 08:51:47.841999 22861.1 0x0040: 20202020 20202020 | |

 22861.1 Getmsgopts expanded (all fields):

 22861.1 StrucId (CHAR4) : 'GMO '

 22861.1 x'474d4f20'

 22861.1 Version (MQLONG) : 1

 22861.1 x'00000001'

 22861.1 MQGMO.Options= (MQLONG) : 8194

 22861.1 x'00002002'

 22861.1 Options=MQGMO_SYNCPOINT

 22861.1 Options=MQGMO_FAIL_IF_QUIESCING

 22861.1 WaitInterval (MQLONG) : 0

 22861.1 x'00000000'

 22861.1 Signal1 (MQLONG) : 0

 22861.1 x'00000000'

 22861.1 Signal2 (MQLONG) : 0

 22861.1 x'00000000'

 22861.1 ResolvedQName (MQCHAR48) : 'TCZ.TEST1'

 22861.1 x'54435a2e5445535431'

Capitalware's MQ Technical Conference v2.0.1.6

strmqtrc and MH06 example

The following pieces are found in the trace for the MQGET call. We can see both the inputs

and outputs coming from this MQGET. From this trace data, we can see that the local C

application is missing something in their MQGET call. What is missing?

 MQGET >> (Inputs being passed into the MQGET)

 Encoding (MQLONG) : 273 (MQENC_INTEGER_NORMAL)

 CodedCharSetId (MQLONG) : 819

 MQGMO.Options (MQLONG) : MQGMO_SYNCPOINT,MQGMO_FAIL_IF_QUIESCING

 MQGET << (Outputs being passed back from the MQGET)

 Encoding (MQLONG) : 273 (MQENC_INTEGER_NORMAL)

 CodedCharSetId (MQLONG) : 37

 Format (CHAR8) : MQSTR (MQFMT_STRING)

 Compcode : 0

 Reason : 0

NOTES:

 There is a learning curve with using tracing. However, if you get comfortable with tracing

and the MH06 supportpac, you can have a powerful debugging tool that allows you to “look

under the hood” of your applications and quickly get to the bottom of application issues.

Capitalware's MQ Technical Conference v2.0.1.6

MH06 Message Parsing Tool

 Message parsing will analyze a message in a strmqtrc or activity trace as if it was

a certain CCSID, and then provide a breakdown of that message based on that

assumption. The CCSID values supported for message parsing are 1208 (UTF-8)

and 1200 (UTF-16).

 Message parsing could be useful for answering questions like:

1. “Does this message contain surrogate pairs and where?“

2. “Has the message been incorrectly marked as 819 when it has a 1208 make

up?” or “Has the message been incorrectly marked as 1208?“

3. “Does the message contain non-ASCII bytes and where?“.

 Before we cover message parsing in more detail, it is helpful to have an

understanding of ASCII, and extended ASCII code pages like 819 and 1208.

Capitalware's MQ Technical Conference v2.0.1.6

ASCII

 ASCII is a 7 bit (x’00’ - x’7F’) character encoding.

 ASCII encodes the English alphabet in upper case (x’41 - x’5A’) and lower case

(x’61’ - x’7A’).

 ASCII also encodes numeric digits 0-9 (x’30 - x’39’) and various other punctuation

and control characters.

 Many code pages (ex. 437, 819, 1208) are ASCII based, and have the alphabetic,

numeric, and punctuation part of ASCII (x’20’ - x’7E’) in common. In other words,

if your MQ message is string and ASCII based, it’s data will not need to convert

between most ASCII based code pages.

Capitalware's MQ Technical Conference v2.0.1.6

819 - Single Byte ASCII Based Code Page

 CCSID 819 or ISO/IEC 8859-1 is a single byte ASCII based code page that

extends the 7 bit ASCII by adding in an eighth bit for more character encodings.

 This allows for character encodings from x’00’ - x’FF’. Remember, ASCII is only

x’00’ - x’7F’. This one bit extension allows for up to 128 more character mappings

in the x’80’ - x’FF’ range.

 819 or ISO/IEC 8859-1 is a Latin alphabet code page, and is generally intended

for Western European languages. For example, the character ñ would be x’F1’ in

819.

Capitalware's MQ Technical Conference v2.0.1.6

1208 - Multi-Byte ASCII Based Code Page

 CCSID 1208 or UTF-8 is a multi-byte ASCII based code page. It encodes all the

Unicode code points in one to four bytes, and is the most commonly used code

page for the Internet.

 Single byte UTF-8 encodings will only be ASCII values (i.e. x’00’ - x’7F’). Also,

ASCII encodings will never appear in a multi-byte encoding.

 Multi-byte UTF-8 encodings have a distinct make up:

1) Two byte encodings must have a first byte of 110xxxxx (x’C2’ - x’DF’) and a

second byte of 10xxxxxx (x’80’ - x’BF’).

2) Three byte encodings must have a first byte of 1110xxxx (x’E0’ - x’EF’) and a

second and third byte of 10xxxxxx (x’80’ - x’BF’).

3) Four byte encodings must have a first byte of 11110xxx (x’Fx’ range) and a

second, third, and fourth byte of 10xxxxxx (x’80’ - x’BF’).

Capitalware's MQ Technical Conference v2.0.1.6

819 and 1208 example

A string message with the data “niño”, would be encoded as follows:

819 (single byte extended ASCII code page):

n=x‘6E’ i=x’69’ ñ=x’F1’ o=‘6F’

1208 (multi-byte ASCII UTF-8 code page):

n=x‘6E’ i=x’69’ ñ=x’C3B1’ o=‘6F’

Observations:

1) If an MQ program took the first message x’6E69F16F’ and incorrectly labeled

the CCSID as 1208, we could apply the 1208 encoding rules to the bytes of the

message and find that the third byte is invalid.

2) If an MQ program took the second message x’6E69C3B16F’ and incorrectly

labeled the CCSID as 819, we could apply the 1208 encoding rules to the bytes

of the message and find that it is an exact match to 1208.

Capitalware's MQ Technical Conference v2.0.1.6

Using Message Parsing in MH06

 mqtrcfrmt program has the message parsing functionality. It can be used against

a message that is traced in either strmqtrc or the amqsact activity trace program.

run trace with –d all option to capture message data

> strmqtrc –m QM1 –t api –d all –p mypgmname

For some platforms, use dspmqtrc to format the trace

> dspmqtrc AMQ12345.0.TRC > AMQ12345.0.FMT

mqtrcfrmt program with –m message parsing option to byte analyze message as 1208

> mqtrcfrmt.linux AMQ12345.0.FMT AMQ12345.0.FMT2 –m 1208

Inside AMQ12345.0.FMT2:

08:06:08.803334 23401.1 Buffer:

08:06:08.803338 23401.1 0x0000: 6e69c3b1 6f |ni..o |

msg-parser UTF-8 Totals: Line:366 Pid:23401.1 Format:MQSTR CCSID:1208 API:MQGET <<

Byte:5 ASCII:3 MB2:1 MB3:0 MB4:0 Inv:0

msg-parser Byte Analysis: Line:366 2-MB2,

Capitalware's MQ Technical Conference v2.0.1.6

Message Parsing - Real Life Use Case

Background:

We had an MQ Server that was running on Solaris SPARC and was being ported to Linux

x86. The old queue manager on Solaris had a default CCSID(819), and the new queue

manager on Linux had a default CCSID(1208). There was a Windows application that would

PUT string messages with a CCSID(819) and the data was positional in nature. There was a

getting C application with local bindings that ran on the Solaris server that would GET with a

CONVERT the messages. The input CCSID on the GET with CONVERT was

MQCCSI_Q_MGR.

Question:

What CCSID does the getting C application convert the string message to on Solaris? When

ported to Linux? Why?

Message Parsing:

I used message parsing to analyze the putting Windows application message data to see if

there was a potential data conversion issue here with this MQ port from Solaris to Linux.

strmqtrc tracing was used to capture the application message data, and then the message

data was message parsed as 1208.

Capitalware's MQ Technical Conference v2.0.1.6

Message Parsing - Real Life Use Case

strmqtrc trace data (formatted to fit slide) with 1208 message parsing:
10:54:31.130641 Buffer:

10:54:31.130645 0x0000: 32303135 2f31322f 31332030 303a3030 |2015/12/13 00:00|

10:54:31.130645 0x0010: 3a3030fd 32303135 2f31322f 31342030 |:00.2015/12/14 0|

10:54:31.130645 0x0020: 323a3532 3a3337fd 31313738 34463242 |2:52:37.11784F2B|

10:54:31.130645 0x0030: 37384245 39334431 38363235 37454536 |78BE93D186257EE6|

10:54:31.130645 0x0040: 30303639 33433442 fd323031 352f3130 |00693C4B.2015/10|

10:54:31.130645 0x0050: 2f323220 31343a30 393a3237 fd323031 |/22 14:09:27.201|

10:54:31.130645 0x0060: 352f3132 2f313420 30323a31 383a3335 |5/12/14 02:18:35|

10:54:31.130649 Compcode : Output Parm

msg-parser UTF-8 Totals: Line:131 Pid:15983.1 Format:MQSTR CCSID:819 API:MQPUT >>

Byte:112 ASCII:108 MB2:0 MB3:0 MB4:0 Inv:4

msg-parser Byte Analysis: Line:131 13-INV,27-INV,48-INV,5c-INV,

Analysis:

 Byte x’FD’ is being used as a delimiter.

 Since x’FD’ is not ASCII, it will convert to a multi-byte character (x’C3BD’) in 1208.

 When this C getting application is ported from Solaris (819) to Linux (1208), this delimiter will

grow from 1 to 2 bytes, causing the message data to shift from a positional standpoint.

 Problems!

Capitalware's MQ Technical Conference v2.0.1.6

Message Parsing - Real Life Use Case

Solution:

I made this application data conversion issue known to the developer, and they changed their

application to do the GET with an input CCSID(819). This guarantees that the application gets

the data in a single byte code page that it was expecting.

Application:

 Message parsing is helpful for analyzing MQ applications that are being ported between

different servers.

 Message parsing is helpful for reviewing new MQ applications.

 Message parsing is helpful for analyzing “poison” messages.

 Reminder: Message parsing can be done with a 1200 (UTF-16) or 1208 (UTF-8)

assumption.

Capitalware's MQ Technical Conference v2.0.1.6

MH06 - msg2File

If you insert a special tag “msg2File-” above a “Buffer:” line in a strmqtrc trace or a “Message

Data:” line in an activity trace, the mqtrcfrmt program will write the bytes of the message to a

file (max length of file name is 20) whose name follows the “msg2File-“ tag.

For example, if you add this msg2File line before a message Buffer in strmqtrc:

14:49:27.664265 29003.1 CONN:1400006 msg2File-file1

14:49:27.664265 29003.1 CONN:1400006 Buffer:

14:49:27.664269 29003.1 CONN:1400006 0x0000: 0066006F 0078D801 DC37 |................|

then a file called file1 will be written out in your current directory that contains the bytes of the

message in the Buffer.

As a convenience, a Java (1.5 compiled) MQFile2Msg.class executable is provided to be able

to take a file like the one that msg2File will produce and PUT it back to a queue.

This functionality allows you to capture and reuse messages without having to stop running

MQ applications.

Capitalware's MQ Technical Conference v2.0.1.6

Questions & Answers

