
Capitalware's MQ Technical Conference v2.0.1.5

SOA, Services, APIs, & MQ

or

How to misuse WMQ without really trying!

Capitalware's MQ Technical Conference v2.0.1.5

Table of Contents
 Background

 Architecture

 Engineering

Design Principles

 Programming

 Infrastructure

 Service Oriented Architecture (SOA)
Overview

 IBM’s version of SOA

 SOA implications for WMQ

 Services

 Application Programming Interfaces (APIs)

 Summary

Capitalware's MQ Technical Conference v2.0.1.5

Architecture

 Oxford Dictionary (“modern” OED) definitions:
 “The style in which a building is designed or constructed, especially with

regard to a specific period, place, or culture.”

 “The complex or carefully designed structure of something.”

 “The conceptual structure and logical organization of a computer or

computer-based system.”

 About the Approach, Design and Structure of a solution.
 Identification of constraints to solution.

 Maximization of Benefits and minimization of Costs.

 Can be formally described and evaluated.

 Widely misunderstood within the IT community.
 Calling a “position” an architect or a document an “architecture” doesn’t make it so!

Capitalware's MQ Technical Conference v2.0.1.5

Engineering - 1

 Oxford Dictionary (“modern” OED) definitions:
 “The branch of science and technology concerned with the design, building,

and use of engines, machines, and structures.”

 “The work done by, or the occupation of an engineer.”

 “The action of working artfully to bring something about”.

 Involves both “Design” and “Execution”.

 Key Solution Evaluation Concepts

 Cost to Build

 Cost to Maintain

 Time to Market

Capitalware's MQ Technical Conference v2.0.1.5

Engineering - 2

 Key Implementation Concepts

 Final Product Quality

 Total Product Cost

 Time to Market

 Improving any one of these three usually puts pressure on the other two!

 Reliability

 Mean Time Between Failure (MBTF)

 Implications of Failure

 Occam’s Razor

 “Entities should not be multiplied unnecessarily”.

 (“Pluralitas non est ponenda sine neccesitate”).

 KISS (Keep It Simple Stupid)

Capitalware's MQ Technical Conference v2.0.1.5

Design Principles

 Core principles first identified in the 1960s and remain unchanged today!

Coupling

 The manner and degree of independence between software modules.

 Design goal is to have loose coupling.

Cohesion

 A measure of the strength of relationship between pieces of functionality within a

given module.

 Design goal is to have high cohesion.

 Coupling and Cohesion are interrelated and loose coupling tends to induce higher

cohesion and vice versa.

 Repackaging of the Original Principles
 SOA (Service Oriented Architecture)

 S.O.L.I.D.

 Single-Responsibility “Principle”, Open-Closed “Principle”, Liskov Substitution

“Principle”, Interface Segregation “Principle, Dependency Inversion “Principle”

 Etc.

Capitalware's MQ Technical Conference v2.0.1.5

Programming

 Assemblers

 Assembler instructions mirror computer CPU instructions, there is a one-to-one

correspondence between the two.

 In essence, human readable executable binary code.

 Translated into CPU binary code by an “Assembler” program.

 High-Level Languages

 Fortran, COBOL, PL/I, C, C++, Java

 Translated into CPU binary code by a “Compiler” program.

 Program Calls / Method Invocations

 Program/Module/Class “A” wants to execute code in Program/Module/Class “B”

 Local (same server)

 Remote (server reached through telecommunications stack (e.g. TCP.IP)

 Data passed between programs

 Call by content (Data itself passed/copied)

 Call by reference (Address of data passed)

Capitalware's MQ Technical Conference v2.0.1.5

Infrastructure

 Hardware

 Computers, Shared storage (disk), Network devices

 Software

 Operating Systems

 UNIX, Windows, i5/OS, z/OS

 Databases

 DB/2, Oracle, etc.

 Application Hosting Environments (AHE)

 Batch/Shell, CICS, IMS, JVMs, Application Servers

 Middleware

 MQ, Broker, Adapters

 Software Stack

 Hardware

 Firmware (implement virtual instruction set)

 Operating System

 Middleware

 Application

Capitalware's MQ Technical Conference v2.0.1.5

Service Oriented Architecture (SOA)

 History

 First described by Alexander Pasik in 1994 (former Gartner analyst)

 International conferences since 2003

 Promoted by multiple hardware vendors

 IBM (Rob High - Chief SOA Architect)

 Oracle

 SAP

 SOA Underpinnings

 Architecture based upon loose coupling and high cohesion

 Architecture lends itself to, but does not require, a distributed solution

 Architecture technology neutral

 Vendor Impact

 Vendors each “bent” the architecture to conform to their product sets

 Vendors co-opted architecture to be a sales vehicle

Capitalware's MQ Technical Conference v2.0.1.5

IBM Service Oriented Architecture (SOA)

Capitalware's MQ Technical Conference v2.0.1.5

IBM SOA Layers - 1

 Interaction Service

 User or Software Interface Layer – A true layer!

 WebSphere Portal Server

 Partner Service

 A second User or Software Interface Layer – A marketing layer!

 WebSphere Commerce Server

 Process Service

 Process Layer – A true layer! Process logic extracted from business logic.

 Process modeling enabled as an abstraction (BPEL).

 WebSphere Process Server / Business Process Manager.

 Information Service (IaaS)

 Abstracting information storage/retrieval – A true layer. Abstracting SQL, etc.

 InfoSphere Information Server.

Capitalware's MQ Technical Conference v2.0.1.5

IBM SOA Layers - 2

 Enterprise Service Bus

 Communication, Routing. Transformation - A true layer!

 Connections, Asynchronous Messaging, Routing, Transformation

 WebSphere MQ

 WebSphere Message Broker / IBM Integration Bus

 Access Services

 A second piece of the ESB – A marketing layer!

 WBIA, Crossworlds

 Business Application Services

 Application Hosting Environments – A true layer!

 CICS, WebSphere Application Server

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 1

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 2

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 3

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 4

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 5

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 6

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA - 1

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA - 2

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA - 3

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA – 4

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA - 5

Capitalware's MQ Technical Conference v2.0.1.5

SOA using Spaghetti

Capitalware's MQ Technical Conference v2.0.1.5

SOA Objectives

 Goal #1 - Agility

 Deploy software to market more quickly

 Reuse infrastructure patterns

 Minimize impact upon existing applications

 Modest reuse of new/existing business software

 Concept is to assemble business solutions from available components (e.g. services)

 Easy access to existing business logic

 Rapid development of new business logic

 Goal #2 - Cost Reduction

 Minimize new solution impacts upon existing systems

 Achieved through loose coupling

 Achieved through high cohesion (reduces/isolates new development)

 Faster time to market

Capitalware's MQ Technical Conference v2.0.1.5

Side Effects of Services

 Ownership

 If software is shared, who owns it?

 Management

 If software is shared, who performs change control?

 Notification?

 Testing?

 Performance?

 Tools

 Monitoring

 How do you predict the shared load on software?

 When will it break?

Capitalware's MQ Technical Conference v2.0.1.5

ESB Quality of Service

 Different ESB implementations have different qualities of service
 WMQ/WMB, WESB, Web Services, ETL

 The implementation chosen should be based on the quality of service required

 Connectivity
 Network connectivity

 Operating System / Runtime environment support

 Programming language support ‘/ Ease of use

 Integrity
 Data Integrity / Transactional support

 Reliability
 Availability (Uptime)

 Monitoring (Proactive Management)

 Agility
 Decoupling of endpoints

 Ease of modification / insertion of new function / transparency to end-points

 Routing and transformation

 Security

Capitalware's MQ Technical Conference v2.0.1.5

ESB Implementations

 Enterprise Service Bus

 Web Services

 Messaging

 Extract, Transform, Load (ETL)

 Web Services

 Fundamentally a Remote Procedure Call

 Tightly coupled point-to-point solution

 Lowest quality of service

 Maximum connectivity

 Messaging

 Loosely or tightly coupled solution

 Highest quality of service: Routing, Transformation, Value-Add processing enabled

 Transactional, requires messaging engine and broker

 ETL

 Alternative to messaging

 Optimized for batch, requires ETL engine

Capitalware's MQ Technical Conference v2.0.1.5

Services

 Every program ever written has an interface.
 Data is passed by content or by reference.

 Interface may be called a “Service”.

 Interface may be called an “API”.

 Not every program written will be a “Service” with a wide potential.
 Most programs/services are local/tactical rather than strategic/enterprise.

 These programs/services will still be executed in SOA middleware.

 These programs/services will require minimal management.

 Some programs/Services will be Enterprise in nature/potential.
 These programs/services must be managed and controlled.

 In most shops, this is a handful of Services.

 Service Invocation
 Invocation should not be limited by channel (e.g. Web Service vs messaging).

 Invocation should not be limited by runtime environment.

 Invocation should be seen as a “front-end” channel to a service.

 Service Versioning

Capitalware's MQ Technical Conference v2.0.1.5

SOA implications for WMQ

 Decoupling

 “Readers” and “Writers” should know as little about each other as possible.

 Physical location and object name should be unknown

 “Readers” and “Writers” should not directly bind to a common object (e.g. queue)

Many queues used for Point-to-Point messaging in a tightly coupled manner

 “Reader” and “Writer” both bound to same object (queue)

 “Reader” bound to object (queue) location (limitation in WMQ)

 Unable to transparently intercept and manipulate a message

 SOA style usage of WMQ

 “Readers” and “Writers” each have their own (different) alias

 Topics & Subscriptions

 Application created solution for location of messages to be read

 SOA style usage of WMB

 Applications should “publish” one update

 Routing and transformation necessary for readers performed in Broker

Capitalware's MQ Technical Conference v2.0.1.5

Application Programming Interfaces (APIs)

 SOA vis a vis API
 SOA Services and API interfaces are identical in function:

 Allow software to intercommunicate with other known interfaces.

 Increase capability and speed deployment through component assembly rather

than build from scratch.

 SOA Services and API approaches are complementary rather than competitive

 Everything we have been through with SOA is being rediscovered / reinvented in APIs

 SOA
 Generally internal to corporations

 Primarily, but not exclusively, Intranet based

 Generally services are proprietary to corporation

 APIs
 Akin to Open Source

 Primarily Internet based & heavily Web Service oriented

Capitalware's MQ Technical Conference v2.0.1.5

APIs and WMQ

 Existing WMQ Programming Interfaces
 IBM – MQI, AMI, WMQ Classes for Java, WMQ Classes for JMS, .Net, C++

 Sun/Oracle – JMS

 Advanced Message Queuing Protocol (AMQP)
 Yet another messaging Interface (aka API)

 Open Standard (OASIS) - https://www.oasis-open.org

 https://www.amqp.org

 Interoperability with WMQ will depend upon implementations

 MQLight
 Yet another messaging Interface (aka API)

 Leverages AMQP 1.0 Wire Protocol

 Does not yet interface with WMQ

 Likely to interface with WMQ through API channels (like SVRCONNs)

 Stay tuned

https://www.amqp.org/

Capitalware's MQ Technical Conference v2.0.1.5

Putting it all together – WMQ, SOA & APIs

 Twenty plus years of WMQ success because of:

 Agility

 Connectivity across disparate run-time environments.

 Easy to learn API.

 Significant speedup of cross platform application deployments

 Data Integrity

 No major transactional competitor when introduced over 20 years ago

 ETL (Mercator).

 What is now competing with WMQ?

 Web Services; and they are widely used for all of the wrong reasons.

 APIs, and they are the hot new thing (see Web Services).

 APIs

 Web Services all over again

Capitalware's MQ Technical Conference v2.0.1.5

Summary

 WMQ / IBM MQ (iMQ ???)

 Use aliases to decouple “Gets” from “Puts” (“Reader” from “Writers”).

 Use Topics and Subscriptions to provide routing and many-to-many connections

 Remember that a Topic should also be accessed through an alias.

 WMB / IIB

 Applications should only “publish” an event once

 “Writers” (Publishers) should be decoupled from “Readers” (Subscribers)

 Writer should “publish” result in the standard format

 Writer should provide all necessary data relevant to the event

 Routing and transformation implemented in Broker

 Enterprise Services

 Should be implemented using WMQ/WMB

 If required, can be reached by a Web Service facade

 APIs

 Public facing facades

Capitalware's MQ Technical Conference v2.0.1.5

Questions & Answers

Capitalware's MQ Technical Conference v2.0.1.5

Presenter
 Glen Brumbaugh

– Glen.Brumbaugh@TxMQ.com

 Computer Science Background
– Lecturer in Computer Science, University of California, Berkeley

– Adjunct Professor in Information Systems, Golden Gate University, San Francisco

 WebSphere MQ Background (20 years plus)
– IBM Business Enterprise Solutions Team (BEST)

o Initial support for MQSeries v1.0

o Trained and mentored by Hursley MQSeries staff

– IBM U.S. Messaging Solutions Lead, GTS

– Platforms Supported

o MVS aka z/OS

o UNIX (AIX, Linux, Sun OS, Sun Solaris, HP-UX)

o Windows

o iSeries (i5OS)

– Programming Languages

o C, COBOL, Java (JNI, WMQ for Java, WMQ for JMS)

mailto:Glen.Brumbaugh@TxMQ.com

Capitalware's MQ Technical Conference v2.0.1.5

