
Capitalware's MQ Technical Conference v2.0.1.5

SOA, Services, APIs, & MQ

or

How to misuse WMQ without really trying!

Capitalware's MQ Technical Conference v2.0.1.5

Table of Contents
 Background

 Architecture

 Engineering

Design Principles

 Programming

 Infrastructure

 Service Oriented Architecture (SOA)
Overview

 IBM’s version of SOA

 SOA implications for WMQ

 Services

 Application Programming Interfaces (APIs)

 Summary

Capitalware's MQ Technical Conference v2.0.1.5

Architecture

 Oxford Dictionary (“modern” OED) definitions:
 “The style in which a building is designed or constructed, especially with

regard to a specific period, place, or culture.”

 “The complex or carefully designed structure of something.”

 “The conceptual structure and logical organization of a computer or

computer-based system.”

 About the Approach, Design and Structure of a solution.
 Identification of constraints to solution.

 Maximization of Benefits and minimization of Costs.

 Can be formally described and evaluated.

 Widely misunderstood within the IT community.
 Calling a “position” an architect or a document an “architecture” doesn’t make it so!

Capitalware's MQ Technical Conference v2.0.1.5

Engineering - 1

 Oxford Dictionary (“modern” OED) definitions:
 “The branch of science and technology concerned with the design, building,

and use of engines, machines, and structures.”

 “The work done by, or the occupation of an engineer.”

 “The action of working artfully to bring something about”.

 Involves both “Design” and “Execution”.

 Key Solution Evaluation Concepts

 Cost to Build

 Cost to Maintain

 Time to Market

Capitalware's MQ Technical Conference v2.0.1.5

Engineering - 2

 Key Implementation Concepts

 Final Product Quality

 Total Product Cost

 Time to Market

 Improving any one of these three usually puts pressure on the other two!

 Reliability

 Mean Time Between Failure (MBTF)

 Implications of Failure

 Occam’s Razor

 “Entities should not be multiplied unnecessarily”.

 (“Pluralitas non est ponenda sine neccesitate”).

 KISS (Keep It Simple Stupid)

Capitalware's MQ Technical Conference v2.0.1.5

Design Principles

  Core principles first identified in the 1960s and remain unchanged today!

Coupling

 The manner and degree of independence between software modules.

 Design goal is to have loose coupling.

Cohesion

 A measure of the strength of relationship between pieces of functionality within a

given module.

 Design goal is to have high cohesion.

 Coupling and Cohesion are interrelated and loose coupling tends to induce higher

cohesion and vice versa.

 Repackaging of the Original Principles
 SOA (Service Oriented Architecture)

 S.O.L.I.D.

 Single-Responsibility “Principle”, Open-Closed “Principle”, Liskov Substitution

“Principle”, Interface Segregation “Principle, Dependency Inversion “Principle”

 Etc.

Capitalware's MQ Technical Conference v2.0.1.5

Programming

  Assemblers

 Assembler instructions mirror computer CPU instructions, there is a one-to-one

correspondence between the two.

 In essence, human readable executable binary code.

 Translated into CPU binary code by an “Assembler” program.

 High-Level Languages

 Fortran, COBOL, PL/I, C, C++, Java

 Translated into CPU binary code by a “Compiler” program.

 Program Calls / Method Invocations

 Program/Module/Class “A” wants to execute code in Program/Module/Class “B”

 Local (same server)

 Remote (server reached through telecommunications stack (e.g. TCP.IP)

 Data passed between programs

 Call by content (Data itself passed/copied)

 Call by reference (Address of data passed)

Capitalware's MQ Technical Conference v2.0.1.5

Infrastructure

  Hardware

 Computers, Shared storage (disk), Network devices

 Software

 Operating Systems

 UNIX, Windows, i5/OS, z/OS

 Databases

 DB/2, Oracle, etc.

 Application Hosting Environments (AHE)

 Batch/Shell, CICS, IMS, JVMs, Application Servers

 Middleware

 MQ, Broker, Adapters

 Software Stack

 Hardware

 Firmware (implement virtual instruction set)

 Operating System

 Middleware

 Application

Capitalware's MQ Technical Conference v2.0.1.5

Service Oriented Architecture (SOA)

  History

 First described by Alexander Pasik in 1994 (former Gartner analyst)

 International conferences since 2003

 Promoted by multiple hardware vendors

 IBM (Rob High - Chief SOA Architect)

 Oracle

 SAP

 SOA Underpinnings

 Architecture based upon loose coupling and high cohesion

 Architecture lends itself to, but does not require, a distributed solution

 Architecture technology neutral

 Vendor Impact

 Vendors each “bent” the architecture to conform to their product sets

 Vendors co-opted architecture to be a sales vehicle

Capitalware's MQ Technical Conference v2.0.1.5

IBM Service Oriented Architecture (SOA)

Capitalware's MQ Technical Conference v2.0.1.5

IBM SOA Layers - 1

  Interaction Service

 User or Software Interface Layer – A true layer!

 WebSphere Portal Server

 Partner Service

 A second User or Software Interface Layer – A marketing layer!

 WebSphere Commerce Server

 Process Service

 Process Layer – A true layer! Process logic extracted from business logic.

 Process modeling enabled as an abstraction (BPEL).

 WebSphere Process Server / Business Process Manager.

 Information Service (IaaS)

 Abstracting information storage/retrieval – A true layer. Abstracting SQL, etc.

 InfoSphere Information Server.

Capitalware's MQ Technical Conference v2.0.1.5

IBM SOA Layers - 2

  Enterprise Service Bus

 Communication, Routing. Transformation - A true layer!

 Connections, Asynchronous Messaging, Routing, Transformation

 WebSphere MQ

 WebSphere Message Broker / IBM Integration Bus

 Access Services

 A second piece of the ESB – A marketing layer!

 WBIA, Crossworlds

 Business Application Services

 Application Hosting Environments – A true layer!

 CICS, WebSphere Application Server

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 1

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 2

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 3

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 4

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 5

Capitalware's MQ Technical Conference v2.0.1.5

Application Structure - 6

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA - 1

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA - 2

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA - 3

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA – 4

Capitalware's MQ Technical Conference v2.0.1.5

An Application in SOA - 5

Capitalware's MQ Technical Conference v2.0.1.5

SOA using Spaghetti

Capitalware's MQ Technical Conference v2.0.1.5

SOA Objectives

  Goal #1 - Agility

 Deploy software to market more quickly

 Reuse infrastructure patterns

 Minimize impact upon existing applications

 Modest reuse of new/existing business software

 Concept is to assemble business solutions from available components (e.g. services)

 Easy access to existing business logic

 Rapid development of new business logic

 Goal #2 - Cost Reduction

 Minimize new solution impacts upon existing systems

 Achieved through loose coupling

 Achieved through high cohesion (reduces/isolates new development)

 Faster time to market

Capitalware's MQ Technical Conference v2.0.1.5

Side Effects of Services

 Ownership

 If software is shared, who owns it?

 Management

 If software is shared, who performs change control?

 Notification?

 Testing?

 Performance?

 Tools

 Monitoring

 How do you predict the shared load on software?

 When will it break?

Capitalware's MQ Technical Conference v2.0.1.5

ESB Quality of Service

  Different ESB implementations have different qualities of service
 WMQ/WMB, WESB, Web Services, ETL

 The implementation chosen should be based on the quality of service required

 Connectivity
 Network connectivity

 Operating System / Runtime environment support

 Programming language support ‘/ Ease of use

 Integrity
 Data Integrity / Transactional support

 Reliability
 Availability (Uptime)

 Monitoring (Proactive Management)

 Agility
 Decoupling of endpoints

 Ease of modification / insertion of new function / transparency to end-points

 Routing and transformation

 Security

Capitalware's MQ Technical Conference v2.0.1.5

ESB Implementations

  Enterprise Service Bus

 Web Services

 Messaging

 Extract, Transform, Load (ETL)

 Web Services

 Fundamentally a Remote Procedure Call

 Tightly coupled point-to-point solution

 Lowest quality of service

 Maximum connectivity

 Messaging

 Loosely or tightly coupled solution

 Highest quality of service: Routing, Transformation, Value-Add processing enabled

 Transactional, requires messaging engine and broker

 ETL

 Alternative to messaging

 Optimized for batch, requires ETL engine

Capitalware's MQ Technical Conference v2.0.1.5

Services

  Every program ever written has an interface.
 Data is passed by content or by reference.

 Interface may be called a “Service”.

 Interface may be called an “API”.

 Not every program written will be a “Service” with a wide potential.
 Most programs/services are local/tactical rather than strategic/enterprise.

 These programs/services will still be executed in SOA middleware.

 These programs/services will require minimal management.

 Some programs/Services will be Enterprise in nature/potential.
 These programs/services must be managed and controlled.

 In most shops, this is a handful of Services.

 Service Invocation
 Invocation should not be limited by channel (e.g. Web Service vs messaging).

 Invocation should not be limited by runtime environment.

 Invocation should be seen as a “front-end” channel to a service.

 Service Versioning

Capitalware's MQ Technical Conference v2.0.1.5

SOA implications for WMQ

  Decoupling

 “Readers” and “Writers” should know as little about each other as possible.

 Physical location and object name should be unknown

 “Readers” and “Writers” should not directly bind to a common object (e.g. queue)

Many queues used for Point-to-Point messaging in a tightly coupled manner

 “Reader” and “Writer” both bound to same object (queue)

 “Reader” bound to object (queue) location (limitation in WMQ)

 Unable to transparently intercept and manipulate a message

 SOA style usage of WMQ

 “Readers” and “Writers” each have their own (different) alias

 Topics & Subscriptions

 Application created solution for location of messages to be read

 SOA style usage of WMB

 Applications should “publish” one update

 Routing and transformation necessary for readers performed in Broker

Capitalware's MQ Technical Conference v2.0.1.5

Application Programming Interfaces (APIs)

  SOA vis a vis API
 SOA Services and API interfaces are identical in function:

 Allow software to intercommunicate with other known interfaces.

 Increase capability and speed deployment through component assembly rather

than build from scratch.

 SOA Services and API approaches are complementary rather than competitive

 Everything we have been through with SOA is being rediscovered / reinvented in APIs

 SOA
 Generally internal to corporations

 Primarily, but not exclusively, Intranet based

 Generally services are proprietary to corporation

 APIs
 Akin to Open Source

 Primarily Internet based & heavily Web Service oriented

Capitalware's MQ Technical Conference v2.0.1.5

APIs and WMQ

  Existing WMQ Programming Interfaces
 IBM – MQI, AMI, WMQ Classes for Java, WMQ Classes for JMS, .Net, C++

 Sun/Oracle – JMS

 Advanced Message Queuing Protocol (AMQP)
 Yet another messaging Interface (aka API)

 Open Standard (OASIS) - https://www.oasis-open.org

 https://www.amqp.org

 Interoperability with WMQ will depend upon implementations

 MQLight
 Yet another messaging Interface (aka API)

 Leverages AMQP 1.0 Wire Protocol

 Does not yet interface with WMQ

 Likely to interface with WMQ through API channels (like SVRCONNs)

 Stay tuned

https://www.amqp.org/

Capitalware's MQ Technical Conference v2.0.1.5

Putting it all together – WMQ, SOA & APIs

 Twenty plus years of WMQ success because of:

 Agility

 Connectivity across disparate run-time environments.

 Easy to learn API.

 Significant speedup of cross platform application deployments

 Data Integrity

 No major transactional competitor when introduced over 20 years ago

 ETL (Mercator).

 What is now competing with WMQ?

 Web Services; and they are widely used for all of the wrong reasons.

 APIs, and they are the hot new thing (see Web Services).

 APIs

 Web Services all over again

Capitalware's MQ Technical Conference v2.0.1.5

Summary

 WMQ / IBM MQ (iMQ ???)

 Use aliases to decouple “Gets” from “Puts” (“Reader” from “Writers”).

 Use Topics and Subscriptions to provide routing and many-to-many connections

 Remember that a Topic should also be accessed through an alias.

 WMB / IIB

 Applications should only “publish” an event once

 “Writers” (Publishers) should be decoupled from “Readers” (Subscribers)

 Writer should “publish” result in the standard format

 Writer should provide all necessary data relevant to the event

 Routing and transformation implemented in Broker

 Enterprise Services

 Should be implemented using WMQ/WMB

 If required, can be reached by a Web Service facade

 APIs

 Public facing facades

Capitalware's MQ Technical Conference v2.0.1.5

Questions & Answers

Capitalware's MQ Technical Conference v2.0.1.5

Presenter
 Glen Brumbaugh

– Glen.Brumbaugh@TxMQ.com

 Computer Science Background
– Lecturer in Computer Science, University of California, Berkeley

– Adjunct Professor in Information Systems, Golden Gate University, San Francisco

 WebSphere MQ Background (20 years plus)
– IBM Business Enterprise Solutions Team (BEST)

o Initial support for MQSeries v1.0

o Trained and mentored by Hursley MQSeries staff

– IBM U.S. Messaging Solutions Lead, GTS

– Platforms Supported

o MVS aka z/OS

o UNIX (AIX, Linux, Sun OS, Sun Solaris, HP-UX)

o Windows

o iSeries (i5OS)

– Programming Languages

o C, COBOL, Java (JNI, WMQ for Java, WMQ for JMS)

mailto:Glen.Brumbaugh@TxMQ.com

Capitalware's MQ Technical Conference v2.0.1.5

