M@ Performance Tuning

or

How fast is fast enough!

Capitalware's MQ Technical Conference v2.0.1.5

Table of Contents

" Background Information
» Synchronous versus Asynchronous
» WMQ Programming Interfaces

= WWMQ Message Processing

» Internal Processing

® \WMQ Performance Tuning
» Key Concepts
» Actual Examples

® Performance Benchmarking

» Infrastructure / Application
» Tools

B Summary

e

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

Background Information

e

Capitalware's MQ Technical Conference v2.0.1.5

Synchronous versus Asynchronous

®m Synchronous Processing
» Communicating programs (e.g. Application & Database) tightly coupled in time
» Calling program is blocked from executing while it waits for called program to complete
» Delays in processing by called program are experienced by the calling program.
» No backlogs, just increased latency!

® Asynchronous Processing
» Communicating programs (e.g. Application and WMQ) loosely coupled in time

» Calling program IS NOT blocked from executing while called program completes its
work

» Delays in processing by called program ARE NOT experienced by the calling program
» No increased latency, just backlogs!

= WMQ processing is always asynchronous!

® Programming patterns may simulate synchronous behavior
» Link two asynchronous calls together by the calling program. For example:

e MQPut (Write a Message)
e MQGet with a wait for response (Read a Message)

e

Capitalware's MQ Technical Conference v2.0.1.5

Synchronous Processing Diagram

Program “A" Program “B”

Transfer of Control

(e.qg. “"Call")

Time

Transfer of Control

(e.g. "Retum”)

e

Capitalware's MQ Technical Conference v2.0.1.5

Asynchronous Processing Diagram

Program “A" Program “B"”

Transfer of Control (e.g. “Call”)

............

Transfer of Control (e.g. "Retum”)

Time

e

Capitalware's MQ Technical Conference v2.0.1.5

Multiple Asynchronous Processes Diagram

Program “A”

Transfer of Control (e.g. "Call")

ooooooooooooo

Transfer of Control (e.q. “Retum”)

Time

wWMQ

Program “B”

Transfer of Control (e.g. "Call”) s

Transfer of Control {e.g. "Retym”)

h 4

_ Capitalware's MQ Technical Conference v2.0.1.5

WMQ Programming Interfaces

= MQI
» Original API
» For Procedural languages (C, COBOL, RPG, Visual Basic)

= \WMQ Classes for Java
» First Java API for MQSeries

o Designed by IBM, initially as SupportPac MA88
o Predates JIMS

= WMQ Classes for JIMS
» Second Java API for MQSeries

o Designed by Sun Microsystems

o Intended to be platform agnostic, but heavily influenced by the WMQ Classes for
Java

o Designed for feature set, not necessarily for performance
+ Message Selectors

= WMQ Classes for .NET, ActiveX, and C++
» Supplied by IBM to support specific language and runtime environments

e

Capitalware's MQ Technical Conference v2.0.1.5

MQI (Message Queue Interface)

Defines a
single-threaded
Queue Manager<

connection.
Defined by an
Hconn.

e

apitalware's MQ Technical Conference v2.0.1.5

MQConn MQCC MQRC
s
MQBegin MQCC MQRC
MQOpen MQCC | MQRC
Defines References MQPut or MQGet MQCC MQRC
a Logical an object
Unit of < within a <
Work connection.
(LUW). Defined by
(Optional) an Hobs, MQIng or MQSet MQCC | MQRC
MQClose MQCC MQRC
MQBack or MQCmit MQCC MQRC
Nez
MQDisc MQCC MQRC

WMQ Classes for Java

Replaces new MQEnvironment();

Operating MQ MQEnvironment. properties{ TRANSPORT_PROPERTY, ClientOrServer);——
System .
environment Environment MQEnvironment, hostname(fostname);, ——
variables

MQEnvironment channel{channelname), ——

MQEnvironment.port(port), ——

Contains MQ

new MQQueueManager(gmgrname);, ——
HConn | QueueManager

disconnect(), ——

aocessQueue[name openopfions...)

put(MQMESSAGE, MQPUTMESSAGEOP’T!ONS)
wagane MQQueue MQMessage MQException
get(MQMESSAGE, MQGETMESSAGEOPTIONS)
close(), ——

—new MQPutMessageOptions(); —» MQPUt MQGet new MQGetMessageOptions(); —
Message Message
Options Options

Capitalware's MQ Technical Conference v2.0.1.5

WMQ Classes for JMS (Point to Point)

createQueueConnection() — MQQueue new MQQueueConnectionFactory(), —

Queue Manager

connection information

createQueueSession(transacted, acknowledge);

1) Contains HCONN

2) Defines LUW scope
3) Single thread

4) Not thread safe!

5) One MQI call at a time

MQQueue
Sender

createSender(QUEUE object):

MQQueue
Connection

MQQueue
Session

send(MESSAGE object) -+ [+|- - oooeen

MQQueue
Receiver

createReoeNer(QtPEUE object);

receive(waif interval) «----------

Connection setTransponType(bindings/client), —

New JMSTextMessage();

JMS
Text Exc\i:;/| ?ion
'''' Message P

1) Message selection (SQL syntax) (set on CreateReceiver method).
2) Message Driven Beans (MDB) - Bean implements onMessage
method and registers as a listener to the QueueReceiver class via the
setMessagelistener method.

3) Errors result in a JMSException object instance.

Basic JMS Point-to-Point (P2P) Features:

Capitalware's MQ Technical Conference v2.0.1.5

WMQ Classes for JMS (Publish/Subscribe)

Queue Manager
connection information

createTopicSession(fransacted, acknowledge);

1) Contains HCONN

2) Defines LUW scope
3) Single thread

4) Not thread safe!

5) One MQI call at a time

MQTopic
Publisher

MQTopic
Subscriber

MQTopic
Connection

MQTopic
Session

createPublisher(TOPIC object);
publish(MESSAGE object); <

createSubscriber(TIOPIC object);

createTopicConnetion(); - MQTopic
start(): — Connection
close(); — Facto ry

new MQTopicConnectionFactory(); —

setBrokerQueueManager(gmgr), —
setBrokerPubQueve(queue); —
setBrokerSubQueuve{queue); —

createTopic(topic); ——] MQTOpIC

New JMSTextMessage();

JMS
I Exggﬂ ?ion
"""""""""""""" Message P

receive(wall interval), | receiveNeWalt{}: - ----- -+ oo

Basic JMS Publish & Subscribe (P&S) Features:
1) Connection is made to Broker instead of Queue Manager.
2) Broker makes connection to Queue Manager.

3) Programming model almost identical to point-to-point (P2P) model.
4) Classes completely different than P2P model.

5) Topics may be defined globally or locally within an application.

Capitalware's MQ Technical Conference v2.0.1.5

Key API Points

m Different APIs will have different performance characteristics

m Different API calls have different costs
» “Connect “is the most expensive call (in terms of latency)
» “Get” calls have things to consider
o Message Filters — response times degrade as queue depths increase
o Lock Contention — response time degrades as number of “Readers” increases

m API Calls are one of the WMQ Bottlenecks!

» Maximum number of API calls / second based upon the API call path length

» Application Architects and WMQ Administrators should know this number!

» Easy to determine, use the “Q” program: SupportPac MAO1 (Thank you Paul Clarke)
o crtmgm TempQmgr
o strmgm TempQmgr
o echo “define glocal(‘TempQueue’)” | runmgsc TempQmgr
o date
o echo “#!11000000/1024” | /...path.../q -m TempQmgr -ap —pl -O TempQueue
o date

o The irecedini commands write 1‘000‘000 messaies of 1K size

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

WMQ Message Processing

e

Capitalware's MQ Technical Conference v2.0.1.5

Key WMQ Internal Processing Points

= API Calls
» Each Connection Handle (HCON) is associated with a single thread!
» API calls through the same Connection Handle are single-threaded!
» API Path Length is roughly 5 ms, resulting in about 200 MQ calls per second.

m Persistent messages are written to the log
» Message cannot be released to the application until the log write completes.
» Non-persistent messages are roughly 10 times faster than persistent messages!

= \WWMQ channel protocol is a blocking protocol
» MCA waits for an acknowledgement after each block is transmitted.
e Impacted by Batch Size (BATCHSZ) parameter.
e Impacted by the Batch Interval (BATCHINT) parameter.
» MCA agents on each Queue Manager must update the log for persistent messages.
» Multiple channels between Queue Manager pairs will significantly increase throughput.
» Message delivery sequence is generally “First In First Out” (FIFO)
e Separating large from small messages can yield significant QoS improvements

e

Capitalware's MQ Technical Conference v2.0.1.5

Message Processing — Application View

= Application view of WMQ
— WMQ is a “Black Box”
— Puts go in, Gets come out

= Application view of Puts
— Due to asynchronous nature of the “Put”, application unaware of the impacts
— From application perspective, more “Puts” equals more throughput

= Horizontal Scaling
= Applications will add additional instances and/or threads
= Often without regard, understanding, or consultation with MQ administrators

[relian [hestiadian

Application AP| “Put” Call QP! _‘Qet‘cctc,atlj‘ Application
Program | | |....- Mémory, CPU "=+, | wMQ -+ Memory, - Program
Instance i @ Instance i}

“Writer” — @ ‘Reader" —

e

Capitalware's MQ Technical Conference v2.0.1.5

Message Processing — MQ View #1

Application
Program

. DASDNO

S owma G|

4 ko
Queus Manager
B" 2

API “Gef" Call
Memqry. CPU

v
Application
Program

“Reader”

Retrieve Messag
Memory, CPU
[wwa
Eab Update Log 4
¥S ESE[* - (Persistent) | Message Channel [¥.
DASD 11O 3 Agent "A 3
ransmit Message Block
Retrieve Messag Memory, CP! A,
> Memory;CPUJO ;
Al - et 3 =
3 é
—— o
2
@
e
Lock Message é
Memory, CP g Acknowledge Block
@ é nnnnnnn CPU. Time
:
-
8 :
<
E :
2 ;
B
3
(5]
' (j v, @ :
Store Message Receive Méssage Block@
Memory, CPU Memory, CPU B

>
wmMmQ
Log Message ¢
¥ - (Persistent) "' | Message Channel
pAsDIWO - Agent ‘B”
Queue Mt_as;age
(Defeired)

DASD 1O

@

= (01)
= (02)
= (03)
= (04)
= (05)
= (06)
= (07)
= (08)
= (09)
* (10)
" (11)
" (12)
" (13)
" (14)
" (15)
" (16)
" (17)

MQPut by application

Move message to WMQ memory
Write persistent message to log
Move message from RAM to Disk
Acquire message lock

Update Log

Retrieve message (RAM or Disk)
Transmit message block

Receive message block
Acknowledge receipt of block
Move message into WMQ memory
Log Message

Move message from RAM to DISK
Acquire message lock

Update Log

Retrieve message (RAM or Disk)
MQGet & commit by application

e

Capitalware's MQ Technical Conference v2.0.1.5

Message Processing — MQ View #2

Application
Program

“Writer"

AP! “Put” Call
Memory, CPU

®

Store Message
_..330? CPU

wa] @
. Log Message
Queus Manager |. "' (Persistent)
A" DASD 'O
>
5 Quetia Message
(Deferrad)
DASD /0

@

® .

Lock Message
_swicQ CPU Retrieve Zmﬂm@m
) §m=§< CPU
wMQ Update Log
s .(Persistant)
o Kiriagns: w DASD 10
7 @
AP “Get" Call Retrieve Message
Zman.i. CPU Memory.. CPU
; ®
Application
Program
‘Reader”

{l. e

Memoary, CPU
® [
Eab Update Log .
'mm.bm.l. {P 1ty u. ge Channel [¥.
DASD 1O Agent "A”
/ll\ = r> .
"7 Transmit Méssage Block -
Retrieve Message Memory, CPU
< > Memory; CPU, :v 3 G
Al :
ST
" Lock Messagé
Memory, CPU

®
S
.m
e

5
Es
ES
£w
g
o

queues

Dm:.oém _smmmmnm

[

Communication Conneaction (e.g. TCP socket)

- (

Store Message Receive memmom Block

Memory, Quc ?:._:oQ CPU
>
@ [wwa
Log Emmwmcm
v (P - o M e Ch
DASD 1O Agent ‘B”

Queue Message
(Defeired)
DASD VO

@

Acknowledge Block
Memory, CPU. Time

@®

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

WMQ Performance Tuning

e

Capitalware's MQ Technical Conference v2.0.1.5

What does Performance Tuning Require?

s Understanding your specific WMQ Infrastructure
» Infrastructure Topology
o Clusters, Queue Managers, Channels

o Brokers, Execution Groups
» Application Resources

o Servers, Languages, External Software (WMQ, WMB/IIB, DB2/Oracle, etc.)

m Understanding WMQ Processing at a Resource Level
» CPU, Memory, Disk, Network

m Creating a Performance Model

» Abstracting detailed WMQ internal processing into key steps & bottlenecks
» Identifying key measurement points

o Processing steps that can be directly measured
o Processing steps that can be inferred

m Key Measurement Points
» ldentifying what metrics can be measured
» Identifying how those metrics can be gathered

e

Capitalware's MQ Technical Conference v2.0.1.5

Key Concepts

= Memory versus Disk
» Processing messages in RAM is MUCH FASTER than processing them from DASD
» WMQ has a limited amount of memory available to each queue.
e This can be altered but normally should not be!

e Once the memory for the queue is exhausted, messages must be written to disk.
— Not Logging
— [var/mgm/gmgrs/QmgrName/queues
— Once this happens, all future messages will be read from disk until processing catches up

m |mpedence
» Enqueue (arrival) rates versus Dequeue (consumption) rates:

¢ |f messages arrive faster than they can be processed they must be queued!
— Messages will first be queued to memory,
— When memory is full, then they will be written to disk.

e The amount of memory buffering should be thought of in time (e.g. seconds).
e |f arrival rates exceed comsumption rates, no amount of RAM will be enough.

e

Capitalware's MQ Technical Conference v2.0.1.5

Key Concept Implications

" System must be visualized as two separate functional components
> “Writers” generate messages.
» “Readers” consume messages.
» “Reader” capacity, on average, MUST exceed “Writer” capacity, on average.

® Horizontal Scaling
» Both “Readers” and “Writers” are single-threaded through the Connection Handle
» The API Path length limits the number of Gets or Puts per second per thread
» The only way to increase these twin limitations is additional threads:
e Additional instances of the application (e.g. more servers)
e A multi-threaded application

= You can’t tune without information
» Application topology
» WMQ topology
» Benchmark data

e

Capitalware's MQ Technical Conference v2.0.1.5

WMQ Process Model — Sample #1

Input
File

Application 2
COBOL

WMQ

JES (MQo1)

System.Cluster.

Transmit.Queue

2/0S (LPAR)

External
Source

e

Capitalware's MQ Technical Conference v2.0.1.5

VM

LINUX

WwMQ (MQ02)

Request_Queue

WMQ (MQ03)

|

VM

LINUX

SHELL

DB (Oracle)

Application 3
(C)

z/0S
z/0S (LPAR)
WMQ
JES (MQo1)
Linux #3
Application 2
COBOL VM
VM LINUX
() LINUX SHELL
L/N_Lx-r_\
j L System.Cluster. WMQ (MQ04) .. DB (Oracle)
Reply_Queue Transmit.Queue
: Application 3
(C)

WMQ Process Model — Sample #2

Application

Business
Application

3 HTTP
HTTPS .

Business

‘Service Policy

Anitacts

ke
8
8 Dol e = Service Registy
_|5 ey o 2| ouwae 1 s
= 5 o (DB2)
B8 g
5(3 =
S
HE i
-4 Database
a H @ DataPower | Gateway H (082) D el ol
{ Appliance Client’) a (WAS)
C ESL (Enterprise Service Layer))]
£ ‘Service Policy
o
e Arifacts
H Message Broker o= Service Registy
DataPower wva Gateway &
_ = f« 3 N4 (11B) (WSRR)
zl2 el RS E) M @) 5| oo o4 e
2 <
HE I
S8 <
HE P I p—
5| DawPower | W “em Gateway o H (0B2) 2 R
g @) e [l B e) H e

@

Service Policy
i

HTTP.
i HTTPS

Benchmark load into a NLB URL. Web Calls per second from a single source (e.g. single TCP/IP socket).
Benchmark load into a NLB URL. Web Calls per second from multiple sources (e.g. multiple TCP/IP sockets).

Benchmark load into a single DataPower appliance. Web Calls per second from a single source (e.q. single TCP/IP socket).

Benchmark load into a single DataPower appliance. Web Calls per second from multiple sources (e.g. multiple TCP/IP sockets).

Benchmark asynchronous load (Datagram) into a single Gateway Queue Manager MQI Channel. WMQ Puts per second from a single source/thread (e.g. single Backend Handler).
Benchmark load into a single Gateway Queue Manager MQI Channel. WMQ Puts per second from multiple sources (e.g. multiple Backend Handlers).
Benchmark load into a multiple Gateway Queue Manager MQI Channels. WMQ Puts per second from multiple sources (e.g. multiple Backend Handlers).
Repeat tests for synchronous Request/Reply loads (Put & Get with wait).

Benchmark asynchronous load into a single Message Broker Queue Manager (One channel). WMQ Puts per second from a single source (Transmit Queue). (1K payload).
Benchmark asynchronous load into a single Message Broker Queue Manager (Two channels). WMQ Puts per second from a multiple sources (Transmit Queues). (1K payload).
Benchmark asynchronous load into a two Message Broker Queue Managers (Two channels). WMQ Puts per second from a multiple sources (Transmit Queues). (1K payload).
Benchmark asynchronous load between a single Gateway and Broker across the Data Centers. WMQ Puts per second from a single source (Transmit Queue) (1K payload).
Benchmark asynchronous load between a single Gateway and Broker across the Data Centers. WMQ Puts per second from multiple sources (Transmit Queues) (1K payload).

Benchmark asynchronous load (Datagram) into a single Message Broker Execution Group. WMQ Gets per second from a single source (Local Queue)

Benchmark asynchronous load (WMQ Datagram) into multiple Message Broker Execution Groups. WMQ Gets per second from a single source (Local Queue).
Benchmark synchronous load (Request/Reply) into a single Message Broker Execution Group. WMQ Get with Puts per second from a single source (Local Queue).
Benchmark synchronous load (Request/Reply) into multiple Message Broker Execution Groups. WMQ Get with Puts per second from a single source (Local Queue)
Benchmark asynchronous load (SOAP Calls) into a single Message Broker Execution Group. Calls per second from multiple sources (TCP/IP Sockets)

Benchmark asynchronous load (SOAP Calls) into a single Message Broker Execution Group. Calls per second from a single source (TCP/IP Socket)

Benchmark SQL Calls into a single table. SQL operations per second from a single source (thread). (Create, Read, Update, Delete)
Benchmark SQL Calls into a single table. SQL operations per second from a multiple sources (threads). (Create, Read, Update, Delete)
Benchmark WSRR Calls to a single node.
Benchmark WSRR Calls to a single node.

Calls per second from a single appliance (thread).

Calls per second from multiple appliances (threads).

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

Performance Benchmarking

e

Capitalware's MQ Technical Conference v2.0.1.5

Infrastructure Benchmarking — Execution 1

m Benchmarking Goals
» Identify Key Bottlenecks at the component/thread level
» Evaluate horizontal scaling solutions for bottlenecks
» Establish baseline performance numbers

o Infrastructure
o Application

m Benchmark Infrastructure First
» WMQ & Message Broker Capacities

» Test Load Generation
o Begin with single thread generating messages
o Add threads until backlog develops (e.g. Queue Depth > 0)

» Horizontally Scaling Behavior
o Adding Queue Managers (Clustering)

o Adding Channels (Parallel Processing)
» Traffic Behavior

o Client Bindings versus Server Bindings
o Persistent versus Non-persistent messages

o Small Messaie sizes versus Larie Messaie sizes

Capitalware's MQ Technical Conference v2.0.1.5

Infrastructure Benchmarking — Execution 2

= Test Execution
» Leave End-to-End tests for last (unless a “smoke test” is needed first)
» Test Performance Model one hop at a time

o Tests are simpler to understand and execute
o Results illustrate basic capacities and bottlenecks
o This approach tends to more easily identify tuning opportunities

m Test Tools
» WebSphere MQ Settings

e MonQ and MonChl
» MAO1 SupportPac (“Q” program) by Paul Clarke

e A “must have” tool.
e Easily generates single-threaded test loads.

e Can act as a back-end application for Request/Reply testing.
» MHO04 SupportPac (“xmqstat” program) by Oliver Fisse

e Another “must have” tool.

e Summarizes queue statistics over duration of test.
» SoapUl & LoadUl

e Generate Web Service requests.

e

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MAO1 - “q”

= QOverview
» Queue I/O tool
» Category 2 SupportPac (“As Is” — no official IBM Support)
» Authored by Paul Clarke of MQGem (formerly of IBM Hursley Laboratory)
» Single executable to download; available for most Windows and UNIX platforms
» More options than you will ever need (The Swiss Army knife of WMQ)

m Usage
» Processing controlled by flags
o WMQ Connection (Client or Server bindings)
o Input and Output (File, Queue, Stdin, Stdout)

« Each record from stdin equates to either one command or one message
o MQ API Options (e.g. Persistence, Priority, etc.)
» Input Data
o Messages to be processed
o Commands to the ‘q’ program

o Input data may be “piped” into the command (Stdin)
* echo “#!100000/1024 Test Message” | ¢ —m gmgrName —O queueName

e

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MAO1 - “q” (continued)

® |[nvocation Examples
» g -m QmgrName -l InQueue -O OutQueue (Queue-> Queue)

» g -m QmgrName -f InFile -O OutQueue (File = Queue)
» g -m QmgrName -I InQueue > OutFile (Queue 2> File)
» g -m QmgrName -O QueueName (Stdin 2 Queue)
= |nput Commands
> “H#” - First character indicates this is a command and not a message
» | > Second character indicates not to echo the command to ouput (optional)
» 9999 - Number of messages to generate
> /9999 - Size of message to be generated (Optional)
> XXX - Text of message

® Queue name specification
» Queue Name may be preceded by a Queue Manager name

» Name separator characters (use only one)
O : H#”, “/”, “\”’ Or “’”

e

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MAO1 - “q” (continued)

m Request Reply — Generating Request messages
» g -m QmgrName -O RemoteQmgr#RequestQueue -r ReplyToQmgr#ReplyToQueue
-apR
o Puts message to a request type queue on a remote Queue Manager
* Messages are put as Request messages (-aR)

+ Messages are put as Persistent (-ap)
* Messages specify to the “Reply To” Qmgr and Queue (-r)

m Request Reply — Generating Reply messages
» g -m QmgrName -l RequestQueue -E —apr -w 300
o Gets request message and generates a reply message
+ Messages are put as Reply messages (-ar)
+ Messages are put as Persistent (-ap)
* Messages are written to the “Reply To” Qmgr and Queue (-E)
* Process will wait for incoming messages 5 minutes (-w 300)

m See slide notes for many additional parameters

m Better yet, see the MAO1 readme.txt file!

e

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MHO4 - xmgstat

= QOverview
» Queue Statistics monitoring and reporting tool
» Category 2 SupportPac (“As Is” — no official IBM Support)
» Authored by Oliver Fisse of IBM Software Group (ISSW)
» Some minor configuration is required.

= Reported Data
» Time - Current Time
» OIC - Open Input Count (Number of input handles; e.g. reading threads)
» OO0C - Open Output Count (Number of output handles; e.g. writing threads)
» MxML - Maximum Message Length
» MEC - Message Enqueue count (Number of messages written)
» MDC - Message Dequeue count (Number of messages read)
» UNC - Uncommited messages (at end of monitoring interval)
» QCD - Current Queue Depth (at end of monitoring interval)
» MxQD - Maximum Queue Depth (during monitoring interval)
» GET - Get Enabled/Disabled
> PUT - Put Enabled/Disabled

e

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MHO4 — xmgstat (continued)

" Extended Reported Data (-e option)

» PQF - Percentage Queue Full (during monitoring interval)
» TQF - Time to Queue Full (at present enqueue rate)
» TQE - Time to Queue Empty (at present dequeue rate)

» The following extended data requires Queue Monitoring (MonQ) to be turned on
o QOM - Queue Oldest Message (Age of oldest message in queue)
o OQTS -> Output Queue Time (Short) — Average time messages spent in queue
o OQTL -> Output Queue Time (Long) — Average time messages spent in queue

m Application Handle Information Reported (-h option)
» Data displayed as per DIS QS(queue) TYPE(HANDLE)

m Key Parameters
» -d Duration to collect statistics (in Seconds)
-e Extended statistics (some require MONQ enabled)
-f File name to write statistics to (default is stdout)
-h Display information about Application Handles
-I Statistics collection interval (in Seconds)
-m Queue Manager name
-g Queue name
-s Suppress display if no activity during interval
-t Display time

e

Capitalware's MQ Technical Conference v2.0.1.5

vVvVvVvVvvVvyVvyVYVYY

SupportPac MHO4 — xmgstat (continued)

m Queue Manager Connection Parameters
» -vUse the MQSERVER environment variable for client connection
» -cChannel name to use for Client Connection
» -xConnectionName ("address(port)”)

® |nvocation Examples
» xmqgstat -m Qmgr -q Queue -d 300 -i60 -h -e -s -t
o Connect to local Queue Manager using Server bindings
o Collect statistics on Queue on Qmgr (-m and —q)
o Collect statistics for 5 minutes (-d)
o Reportstatistics every minute (-i)
o Display Handle information (-h)
o Collect extended statistics (-e)
o Don’t report an interval if there is no activity (-s)
o Display the time (-t)

» xmqggstat -c SYSTEM.DEF.SVRCONN -x hostname(1414) -m Qmgr -g Queue ...
o Connect to server hostname using port1414 (-x)
o Use SYSTEM.DEF.SVRCONN channel (-c)

= Notes

» Use Ctrl-C to stoi execution

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MHO4 — xmgstat (continued)

C:NM@O>xnggstat - TEST -q TEST -1 1 -& -t —h
Knggstat v1.1 - Developed by Oliver Fisse (IBM)

Connected to gueue manager 'TEST’

PLATFORNCUINDOWS NT)> LEVELC(781> CCSIDC(437>
HAXHANDS (256> MAXMSCGLC4194384> MAXPRTY(9) MAXUNSGS(250088> MONQCHIGH)

Processing LOCAL queuwe 'TEST'

DESCC)

CRDATEC(2818-89-89)> CRIIME(15.29.682> ALTDATEC(2018-18-63> ALTTIMECH?.14.32)
CLUSTERC> CLUSNLC> DEFBINDCOPEN)

BOTHRESH(8> BOQNAME()

HONQ(QHGR)> USAGE(NORMAL) NOTRIGGER

Dunping 1 handled{s)...

PID TID AT CHL/APPL TAG/CONN USER ID BINP1 OS
7968 8 USER AdninistratorPIBN-6AE723B N NONY N
ere MO\ javasjre\bin\java.exe

Tine HxHL HxQD G P 0OIC OUC HDC HEC UNC CQD
18:19:69 4194384 2508868 E E 8 1 8 6308 a 6388
189:19:186 4194384 2568668 E E a 1 8 358] 6658
18:19:11 4194384 25086689 E E a 1 a8 8 a 6658
18:19:12 4194384 2508688 E E a 1 a 358 a
18:19:14 41943864 2500668 E E 1 1 7868 a] a
19:19:15 4194384 25606866 E E 1 1 350 358 a a
18:19:16 4194384 2560648 E E 1 1 a a a a
18:19:17 4194384 2560686686 E E 1 1 358 358 a a
18:19:18 4194384 25008688 E E 1 1 8] 8]
19:19:19 4194384 25686868 E E 1 1 358 358) a
19:19:28 4194384 2506668 E E 1 1 a8 8 a a
19:19:21 4194384 25086068 E E 1 1 358 358 a a
18:19:22 4194364 2568668 E E 1 1 a a] a
19:19:23 4194384 2560866 E E 1 1 383 316 a 16
18:19:24 4194384 25668648 E E 1 1 47 34 a a
18:19:25 4194384 25068688 E E 1 1 18 62 a8 48

Control-C caught. Shutting doun...

Dizsconnected fFrom aueuo nanager ‘TEST’
Knggestat vi.1 ended.

Capitalware's MQ Technical Conference v2.0.1.5

Application Benchmarking

= Far more difficult than Infrastructure testing!

» Requires co-ordination with one or more Application teams
o Communications
o Scheduling

» May require data setup and/or cleanup for each test
» More resource intensive; fewer iterations

= End-to-End Testing

» Different groups and tools collecting data

Difficult to correlate all of the different data
Frequently, too many cooks in the kitchen!

Not very useful for fine grained analysis and tuning

>
>
>
» However, essential to benchmark application throughput and latency

m | atency versus Capacity
» Latency - The round trip time of a single transaction
» Capacity - The number of transaction per period of time (Seconds, Minutes, Days, etc)

= |[BM Performance Reports

» Don’t forget to compare your results against IBMs!

e

Capitalware's MQ Technical Conference v2.0.1.5

Key Performance Indicators (KPIs)

= API Puts - Calls/Second; Bytes/Second

» First set of tests with no threads reading messages.
» Second set of tests with threads reading messages.
o Keep queue depth close to or equal to zero.
» Single Thread — 1K message size.
» Multiple Threads — 1K message size.
» Run Tests with Large Messages (e.g. 10 MB).
o Keep an eye on disk space utilization.
» Evaluate horizontal scaling (e.g. adding threads).
» Keep an eye on queue depths and disk space usage.
» Clean up messages after the test.

" API Gets - Calls/Second; Bytes/Second

» Single Thread — 1K message size.
» Multiple Threads — 1K message size.
» Run Tests with Large Messages (e.g. 10 MB).

® Message Channels

» Messages/Second; Bytes/Second
» Add additional channels and transmission queues to test scaling options

e

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

Summary

e

Capitalware's MQ Technical Conference v2.0.1.5

Next Steps

= MoreTuning

» lterative process
» Infrastructure Tuning (Channels) & Application Tuning (Architecture, Design, and
Programming)
» Requires considerable WMQ knowledge
o Application Design and Programming
o WMQ Internal Processing
o WMQ Data Gathering (measurements) & Testing tools
» Results are sometimes counter-intuitive

m Capacity Planning
» With benchmarks in place, overall system capacity can be estimated
» Will capacity meet business requirements and/or SLAs?
» Will capacity handle peak loads?

= Monitoring
» Now that you know how it will break, monitor to determine when it will break!
» Proactive upgrades before the Production outage takes place.

_ Capitalware's MQ Technical Conference v2.0.1.5

Key Takeaways

= WMQ processing is asynchronous
» Some application processes are “Writers”
» Some application processes are “Readers”
» Speed of writers unrelated to speed of readers

m Applications Scale Horizontally
» Applications increase capacity by adding additional instances

o Application Instances (e.g. Application Servers)
o Application threads

= When capacity of “Readers” exceeds capacity of “Writers”
» Performance is at maximum throughput
» Messages are processed in memory
» Queue Depths are at or near zero

= When capacity of “Writers” exceeds capacity of “Readers”
» Performance is at minimum throughput
» Messages are processed from disk
» Queue Depths are increasing

e

Capitalware's MQ Technical Conference v2.0.1.5

Reference Material

= |[BM Developer Works
— Tuning for Performance
o http://lwww.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/071
2_dunn.htmlIText

= |BM SupportPacs
— http://lwww-01.ibm.com/support/docview.wss?rs=977&uid=swg27007205

— Performance Reports (MPxx)
o READ THESE!!! They have lots of information NOT FOUND ELSEWHERE!
o http:/iwww-
01.ibm.com/support/docview.wss?rs=171&uid=swg27007150&loc=en_US&cs=utf-
8&lang=en

— MAO1 SupportPac (“q”)
o http://www-
01.ibm.com/support/docview.wss?rs=171&uid=swg24000647&loc=en_US&cs=utf-
8&lang=en

— MHO04 SupportPac (“xmqgstat”)
o http://www-
01.ibm.com/support/docview.wss?rs=171&ql=Xa02&uid=swg24025857%20&Iloc=
en_US&cs=utf-8&lang=en

e

Capitalware's MQ Technical Conference v2.0.1.5

Deep Thoughts

MN\B\AE%TOLFEU\I\/B%SE ,
T ADRRYIHG

Capitalware's MQ Technical Conference v2.0.1.5

Questions & Answers

e

Capitalware's MQ Technical Conference v2.0.1.5

Presenter

= Glen Brumbaugh
— Glen.Brumbaugh@TxMQO.com

= Computer Science Background
— Lecturer in Computer Science, University of California, Berkeley
— Adjunct Professor in Information Systems, Golden Gate University, San Francisco

= WebSphere MQ Background (20 years plus)
— IBM Business Enterprise Solutions Team (BEST)

o Initial support for MQSeries v1.0

o Trained and mentored by Hursley MQSeries staff
— IBM U.S. Messaging Solutions Lead, GTS
— Platforms Supported

o MVS aka z/OS
o UNIX (AIX, Linux, Sun OS, Sun Solaris, HP-UX)
o Windows
o iSeries (i50S)
— Programming Languages
o C, COBOL, Java (JNI, WMQ for Java, WMQ for JMS)

e

Capitalware's MQ Technical Conference v2.0.1.5

mailto:Glen.Brumbaugh@TxMQ.com

e

Capitalware's MQ Technical Conference v2.0.1.5

