WebSphere MQ
High Availability

Smarter Process
WebSphere MQ Industry Practices

Credits

- Talk to your IBM representative
- Talk to your colleagues
- Visit The Capitalware site

http://www.capitalware.biz/
WebSphere MQ High Availability

Introduction

• Availability:
 • What does it mean to me.
 • What does it mean to my business
 • What does it mean to my application

• Technology:
 • Cannot solve all your problems
 • How close do you come to 99999

• Planning
 • Planning, the four letter word
 • Approach

• Testing
 • Taken for granted
 • All or nothing
 • Continuous
In information technology, high availability refers to a system or component that is continuously operational for a desirably long length of time. Availability can be measured relative to "100% operational" or "never failing." A widely-held but difficult-to-achieve standard of availability for a system or product is known as "five 9s" (99.999 percent) availability.
WebSphere MQ High Availability

Weakest Link

- With no redundancy or fault tolerance, a failure of any key component can lead to a loss of availability
- Every component is critical. The system relies on the:
 - Power supply, system unit, CPU, memory
 - Disk controller, disks, network adapter, network cable
 - ...and so on
- Various techniques have been developed to tolerate failures:
 - UPS or dual supplies for power loss
 - RAID for disk failure
 - Fault-tolerant architectures for CPU/memory failure
 - ...etc
- Elimination of SPOFs is important to achieve HA
WebSphere MQ High Availability

WebSphere MQ HA Technologies

- Queue Manager Clusters
- Queue-sharing groups
- Support for networked storage
- Multi-instance Queue Managers
- Multi-instance Message Broker
- HA Clusters
- Client reconnection
WebSphere MQ High Availability

Queue Manager Clusters

- Cluster Queue manager provide alternate availability for distribution of messages
- Sharing cluster queues on multiple queue managers prevents a queue from being a SPOF
- Cluster workload algorithm automatically routes traffic away from failed queue managers
- New feature even allows the QMGR to react when there is no application reading messages
WebSphere MQ High Availability

Queue-Sharing Groups

- On z/OS, queue managers can be members of a queue-sharing group
- Shared queues are held in a coupling facility
 - All queue managers in the QSG can access the messages

Benefits:
- Messages remain available even if a queue manager fails
- Pull workload balancing
- Apps can connect to the group
WebSphere MQ High Availability

Introduction to Failover and MQ

- Failover is the automatic switching of availability of a service
 - For MQ, the “service” is a queue manager
- Traditionally the preserve of an HA cluster, such as HACMP
- Requires:
 - Data accessible on all servers
 - Equivalent or at least compatible servers
 - Common software levels and environment
 - Sufficient capacity to handle workload after failure
 - Workload may be rebalanced after failover requiring spare capacity
 - Start-up processing of queue manager following the failure
- MQ offers two ways of configuring for failover:
 - Multi-instance queue managers
 - HA clusters
WebSphere MQ High Availability

Failover considerations

- Failover times are made up of three parts:
 - Failure Notification
 - Heartbeat missed
 - Bad result from status query
 - Environment switch
 - Shutting down non-effected systems
 - Switching IP addresses, disks, etc
 - Time taken to activate the service
 - Queue Manager restart
 - Application Restart

- Failover involves a queue manager restart
 - Nonpersistent messages, nondurable subscriptions discarded

- For fastest times, ensure that queue manager restart is fast
 - No long running transactions, for example
 - Less Persistent messages
 - Fast Disk, non-contention
WebSphere MQ High Availability

Multi-instance Queue Managers

- Out of the Box failover
 - No Additional software required

- Single instance queue manager on different machines
 - One is the “active” instance, other is the “standby” instance
 - Active instance “owns” the queue manager’s files
 - Accepts connections from applications
 - Standby instance monitors the active instance
 - Applications cannot connect to the standby instance
 - If active instance fails, standby restarts queue manager and becomes active

- Instances are the SAME queue manager
 - only one set of data files
 - Queue manager data is held in networked storage
WebSphere MQ High Availability

Setting up Multi-instance Queue Manager

- Set up shared file systems for QM data and logs
- Create the queue manager on machine1
 - `crtmqm -md /shared/qmdata -ld /shared/qmlog QM1`
- Define the queue manager on machine2 (or edit mqs.ini)
 - `addmqinf -v Name=QM1 -v Directory=QM1 -v Prefix=/var/mqm -v DataPath=/shared/qmdata/QM1`
- Start an instance on machine1 – it becomes active
 - `strmqm -x QM1`
- Start another instance on machine2 – it becomes standby
 - `strmqm -x QM1`

Conversion Command

That’s it. If the queue manager instance on machine1 fails, the standby instance on Machine2 takes over and becomes active.
1. Normal execution

WebSphere MQ High Availability
Multi-instance Queue Managers - Execution

MQ Client

168.0.0.1

Machine A

QM1
Active instance

can fail-over

168.0.0.2

Machine B

QM1
Standby instance

networked storage

Owns the queue manager data
2. Disaster strikes

Multi-instance Queue Managers – Disaster

Client connections broken

Machine A

Machine B

MQ Client

MQ Client

network

locks freed

networked storage

QM1

168.0.0.2

QM1 Standby instance
3. FAILOVER

Standby becomes active

MQ Client

MQ Client

network

Client connection still broken

Machine B

QM1 Active instance

168.0.0.2

networked storage

Owns the queue manager data

QM1

Capitalware’s MQ Technical Conference v2.0.1.4
WebSphere MQ High Availability

Multi-instance Queue Managers – Failover Complete

4. Recovery complete

- MQ Client
- MQ Client

network

Client connections reconnect

Machine B

QM1 Active instance

168.0.0.2

networked storage

Owns the queue manager data
WebSphere MQ High Availability

Multi-instance Queue Managers - Restrictions

- MQ is NOT an HA cluster coordinator
 - If other resources need to be coordinated, you need an HA cluster
 - WebSphere Message Broker integrates with multi-instance QM
- Queue manager services can be automatically started, but with limited control
- Client connections
 - Automatic reconnection via Client
 - Pre v7.0.1 reroute via IP Sprayer or CCDT
- Stand By Queue Manager
 - Post Failover no standby Queue Manager
 - Standby Queue Manager must be restarted

System administrator is responsible for restarting another standby instance when failover has occurred.
WebSphere MQ High Availability

Dealing with multiple IP addresses

- The IP address of the queue manager changes when it moves
 - So channel configuration needs knowledge of this
- Connection name syntax extended to a comma-separated list
 - CONNAME('168.0.0.1,168.0.0.2')
 - Needs 7.0.1+ qmgr or client
- Unless you use external IPAT or an intelligent router or MR01
- WAS8 admin panels understand this syntax.
- For earlier levels of WAS
 - Connection Factories:
 - Set a custom property called XMSC_WMQ_CONNECTION_NAME_LIST to the list of host/port names that you wish to connect to
 - Make sure that the existing host and port values defined on the connection factory match the first entry in this property
 - Activation Specs:
 - Set a custom property called connectionNameList on the activation spec with the same format
WebSphere MQ High Availability

Administering Multi-instance QMgrs

- All queue manager administration must be performed on active instance
- dspmq enhanced to display instance information
 - dspmq issued on “staravia”
 - On “staravia”, there’s a standby instance
 - The active instance is on “starly”

```bash
$ hostname
staravia
$ dspmq -x
QMNAME(MIQM) STATUS(Running as standby)
  INSTANCE(starly)  MODE(Active)
  INSTANCE(staravia)  MODE(Standby)
```
WebSphere MQ High Availability

Multi-instance QMGR MQ Explorer – Create QMGR

- **Data and Log paths**
 - Use default paths
 - Data path: `/mqexport/701/data`
 - Log path: `/mqexport/701/log`

- **Start queue manager after it has been created**
 - Multi-instance Queue Manager:
 - Permit a standby instance
WebSphere MQ High Availability

MQSeries Ten Commandments

$ dsqmqrn -o command QMMI2

The output is:

addmqinf -s QueueManager -v Name=QMMI2 -v Directory=QMMI2 -v Prefix=/var/mqm -v DataPath=/mqexport/701/data/QMMI2
WebSphere MQ High Availability

Multi-instance QMGR in MQ Explorer

MQ Explorer automatically switches to the active instance
WebSphere MQ High Availability

HA clusters

- MQ traditionally made highly available using an HA cluster
 - IBM PowerHA for AIX (formerly HACMP), Veritas Cluster Server, Microsoft Cluster Server, HP Serviceguard, …
- HA clusters can:
 - Coordinate multiple resources such as application server, database
 - Consist of more than two machines
 - Failover more than once without operator intervention
 - Takeover IP address as part of failover
 - Likely to be more resilient in cases of MQ and OS defects
WebSphere MQ High Availability

HA clusters (con’t)
- In HA clusters, queue manager data and logs are placed on a shared disk
 - Disk is switched between machines during failover
- The queue manager has its own “service” IP address
 - IP address is switched between machines during failover
 - Queue manager’s IP address remains the same after failover

- The queue manager is defined to the HA cluster as a resource dependent on the shared disk and the IP address
 - During failover, the HA cluster will switch the disk, take over the IP address and then start the queue manager
WebSphere MQ High Availability

Multi-instance QM or HA cluster?

- Multi-instance queue manager
 - Integrated into the WebSphere MQ product
 - Faster failover than HA cluster
 - Delay before queue manager restart is much shorter
 - Runtime performance of networked storage
 - Suitable storage can sometimes be a challenge

- HA cluster
 - Capable of handling a wider range of failures
 - Failover historically rather slow, but some HA clusters are improving
 - Capable of more flexible configurations (e.g., N+1)
 - Required MC91 SupportPac or equivalent configuration
 - Extra product purchase and skills required

Storage distinction

- Multi-instance queue manager typically uses NAS
- HA clustered queue manager typically uses SAN
WebSphere MQ High Availability

Virtual Systems

- Another mechanism being regularly used

- When MQ is in a virtual machine … simply shoot and restart the VM

- “Turning it off and back on again”

- Can be faster than any other kind of failover
WebSphere MQ High Availability

HA applications – Connectivity

- If an application loses connection to a queue manager, what does it do?
 - Crash and Burn
 - Handle the failure and retry the connection
 - Reconnect automatically thanks to application container
 - WebSphere Application Server contains logic to reconnect JMS clients
 - Use MQ automatic client reconnection
WebSphere MQ High Availability

MQ Automatic client reconnection

- MQ client automatically reconnects when connection broken
 - MQI C clients and standalone JMS clients
 - JMS in app servers (EJB, MDB) does not need auto-reconnect

- Reconnection includes reopening queues, remaking subscriptions
 - All MQI handles keep their original values

- Can reconnect to same queue manager or another, equivalent queue manager

- MQI or JMS calls block until connection is remade
 - By default, will wait for up to 30 minutes
 - Long enough for a queue manager failover (even a really slow one)
WebSphere MQ High Availability

Automatic client reconnection

- Can register event handler to observe reconnection

- Not all MQI is seamless, but majority repaired transparently
 - Browse cursors revert to the top of the queue
 - Nonpersistent messages are discarded during restart
 - Nondurable subscriptions are remade and may miss some messages
 - In-flight transactions backed out

- Tries to keep dynamic queues with same name
 - If queue manager doesn’t restart, reconnecting client’s TDQs are kept for a while in case it reconnects
 - If queue manager does restart, TDQs are recreated when it reconnects
WebSphere MQ High Availability

Automatic client reconnection

- Enabled in application code, ini file or CLNTCONN definition
 - MQI: MQCNO_RECONNECT, MQCNO_RECONNECT_Q_MGR
 - JMS: Connection factory properties

- Plenty of opportunity for configuration
 - Reconnection timeout
 - Frequency of reconnection attempts

- Requires:
 - Threaded client
 - 7.0.1 server – including z/OS
 - Full-duplex client communications (SHARECNV >= 1)
WebSphere MQ High Availability

Client Configurations for Availability

- Use wildcarded queue manager names in CCDT
 - Gets weighted distribution of connections
 - Selects a “random” queue manager from an equivalent set
 - Setup MQExplorer or MO72 Support Pack
- Use multiple addresses in a CONNAME
 - Could potentially point at different queue managers
 - More likely pointing at the same queue manager in a multi-instance setup
- Use automatic reconnection
- Pre-connect Exit from V7.0.1.4
- Use IP routers to select address from a list
 - Based on workload or anything else known to the router
- Can use all of these in combination!
WebSphere MQ High Availability

Application Patterns for availability

- Article describing examples of how to build a hub topology supporting:
 - Continuous availability to send MQ messages, with no single point of failure
 - Linear horizontal scale of throughput, for both MQ and the attaching applications
 - Exactly once delivery, with high availability of individual persistent messages
 - Three messaging styles: Request/response, fire-and-forget, and pub/sub

WebSphere MQ Best Practices

Good Bye, So Long and Thanks for the Fish !!!!!!!!!!!!!!
WebSphere MQ Best Practices

Who is this guy ?????????????????????

- Bobbee Broderick (1970)
- Experience
 - Wall St Consultant 25+ years (z, CICS, DB2) (MQ, MQSI)
 - MQ/MQSI/WMB since 1998
- IBM – ISSW 8 years
 - Healthchecks
 - Crit Sits
 - Architecture, programming, etc
- Tech Lead for ISSW for MQ and MQFTE (MFT)
 Also for MQAMS/ WMB
- Star of “The Good Shepherd”
- BB Photography
 www.bb-photography.org
- Email – rkbroder@us.ibm.com