Are z/OS & distributed MQ platforms like oil and water?

Lyn Elkins *elkinsc@us.ibm.com* IBM ATS Mark Taylor marke_taylor@uk.ibm.com IBM Hursley

Introduction

- One objective of MQ is isolating apps from needing to understand platforms
 - There is a common API that can be expressed in many languages
- Another objective is to have (reasonably) common operational model
 - Much of admin is the same on all platforms
- But it's not all the same
 - One dichotomy has always been whether to be natural to MQ-ness or behave like other things on the platform
 - Some features don't make sense on some platforms
 - For example, .Net interface is only on Windows
 - Some features have not been implemented everywhere for other reasons
- So there are differences, and that is what this presentation will cover
- Will base this on V8

- There are essentially two implementations of MQ from Hursley lab
 - z/OS
 - Distributed (Windows, Unix, Linux, i)
 - There are some further subspecies variants like VSE or NSS
- Within Distributed implementation, there are some platform unique features
 - But we won't discuss those here
 - Most platform-unique code abstracts OS facilities like locking or NLS or threads
- In the early days, some code was written for one and then "ported"
 - In particular, the channel code
 - Meant double-fixing, and re-porting for each release
- Internal architecture (eg tasks, threads) very different
 - But we won't discuss much of that. Understanding externals is more important
- Since V7.0, some code is truly common
 - Just one copy of the source part shared between both
 - New features generally use common code where feasible

- Setting up
- Application Programming
- Administration

• Lyn will talk about z/OS in this color

• Mark will talk about Distributed in this colour

Setting Up

Getting started

- Lots of differences in initial installation and setup
- Getting the code on the box is part of the job
 - MQ uses native installation techniques for all platforms
 - Needs a suitably-authorised person to do that installation
 - SMPE for z/OS, installp for AIX, rpm for Linux etc
- But other differences primarily due to
 - Security
 - Storage
- Share philosophy of needing no more features than is found on the system
 - So no prereq software for core capabilities of MQ
 - Product ships components that are needed such as gskit
 - But can exploit things that we know are there
 For example, on z/OS we use the system-provided SSL
 - Some extended capabilities may have additional prereqs
 - Shared Queues need DB2

Security

- On Distributed, MQ implements its own authorisation mechanism
 - There is no generally-accepted standard interface on these systems
- And relies on the existence of certain userids
 - There are differences even between individual platforms
- On z/OS, MQ exploits the common authorization interface, SAF
 - And so the z/OS security administrator has to be involved
 - Define the profiles etc.
- Will look more at security later on

- On Distributed, MQ uses directories such as /var/mqm/qmgrs and /var/mqm/logs
 - The system administrator will probably allocate filesystems and mount them
 - These days, may have separate SAN administrator
- Each queue has its own file within the filesystem
 - To store the message data
 - Each queue could hold 1TB
- Queues do not interfere with each other's storage requirements
 - Subject to max size of filesystem
- Logs can be LINEAR or CIRCULAR
 - Choice made when qmgr is created
 - With linear logging, you then need a job to remove old log files
 - MQ does not directly implement dual-logging; relies on RAID filesystems

Storage (z/OS)

- Queues are handled via pagesets and bufferpools
- Multiple queues may use the same pageset and bufferpool
 - Can lead to storage contention
 - V8 increases number of bufferpools to match number of pagesets
- No direct equivalent of circular logging but constraints can be applied to achieve a similar effect
 - Semi-circular?
 - Active logs are 'almost like circular', with offloading to archive logs
- Logs are managed via the BSDS
- MQ understands and implements Dual Logging
- Tool provided to format and extract messages from log

- A z/OS-unique feature
 - Multiple queue managers can see the same queue
 - Continuous processing of messages from a queue even when one LPAR fails
- Relies on the Coupling Facility hardware
 - And relies on DB2 Data Sharing
- Results in several unique possibilities
 - Inter-qmgr communication without standard channels
 - Dynamic selection of which qmgr to connect to
- Effects appear in many places
 - For example, single MQSC command can be issued to multiple queue managers giving multiple responses

- MQ V7.5 on Distributed incorporated MFT (nee FTE) and AMS
 - "MQ Advanced" license covers all features
- On z/OS, these are available as separate products
 - V8 improved technical integration but still separate licenses
- On z/OS, use of inbound client connections was restricted
 Restriction removed in V8 (no longer a CAF)
- Distributed MQ has the MQXR service for mobile (MQTT) clients
 - Not available on z/OS
 - Expected that mobile clients connect via front-end qmgr before hitting z/OS apps

Application Programming

General

- Default codepages and encoding differ by platform
- Always use the header files for your platform
 - Don't be tempted to cross-compile
- Maximum lengths of fields may vary
- MQI return codes may be different
 - Often because underlying storage mechanisms have different error conditions
 - For example, Coupling Facility errors on shared queues
- z/OS does not have MQ clients
 - Some parameters to some verbs only apply in client environments
 - For example, the MQCD passed during MQCONNX

API - Connections

MQCONN/MQCONNX

- Verbs not required for CICS transactions
 - MQHC_DEF_HCONN can be used for subsequent verbs in applications
- ConnTag is available to control serialization
 - > An application (especially an MCA) can tell if another instance of itself is already running
 - > On either the same local qmgr or any other in the QSG
- Group connection to QSG
- Lots of client-only options for connection
 - MQCD can be specified
 - Reconnect options
- MQCNO_SHARED options for multi-threaded applications
 - Controls whether an hConn can be (serially) used by other threads in the same process
- Fastpath binding
- Control of accounting
 - > When accounting information is being collected, some apps may request exclusion

API - Disconnections

- MQDISC
 - Always recommended
 - Rollback when application abends
 - Although definition of "abend" is not clear in every case
 - CICS and IMS do make it clear!
 - A JVM has been known to return OK to the operating system even when the user's code has caused a fatal exception
 - Rollback when not used and application ends

API - Objects

- MQOPEN
 - Default dynamic queue names begin with CSQ.* or AMQ.*
 - Distributed can open multiple queues simultaneously via Distribution List
 - Publish/Subscribe preferred cross-platform model
- MQCLOSE
 - No platform differenences in practice
- MQSET
 - Follows the same rules as MQSC attributes for platforms
- MQINQ
 - Follows the same rules as MQSC attributes for platforms

- MQPUT/MQPUT1
 - Messages can be automatically segmented
 - But Message groups are cross-platform
 - Distributed supports "Reference messages" which can avoid putting large amounts of data on a queue
- MQGET
 - z/OS has "get with signal" to asyncronously notify app when messages appear
 MQCB is now preferred cross-platform model
 - z/OS has MARK_SKIP_BACKOUT for simpler processing of poison messages
 - Bad messages can be moved to an application-specific DLQ while backing out other resource changes
 - Distributed can get portions of messages via segmentation
- MQSUB
 - No platform differences
- MQSUBRQ
 - No platform differences

API – Flow control

- MQCB
 - Definition of the callback function in MQCBD varies by environment
 - eg C function pointer, CICS program name
- MQCTL
 - Not in IMS adapter
 - On z/OS, apps must be authorized to use USS
- MQSTAT
 - Client applications only
 - But usable regardless of server platform

- MQDLTMP
- MQBUFMH
- MQCRTMH
- MQDLTMH
- MQMHBUF
- MQSETMP
- MQINQMP
- No platform differences

API - Transactions

MQBEGIN

- Only available on Distributed
- z/OS always has a transaction manager available
- MQCMIT
 - On all platforms when not running under external TM
- MQBACK
 - On all platforms when not running under external TM
- Default for MQ transactional behaviour is different
 - MQI on Distributed assumes NO_SYNCPOINT
 - MQI on z/OS assumes SYNCPOINT
 - Always specify syncpoint options on MQI calls
- Environments for two-phase transactions differ
 - On z/OS, RRS CICS and IMS are all available for transaction management
 - On Distributed, XA is available as the standard interface

transaction managei

Exits

- z/OS has API-Crossing exit for CICS
 - But no other environments
- Distributed has API exit for all environments
 - With a very different interface
- Installable Services on Distributed
 - But very few people write these so not too interesting
 - Primarily used for the OAM security module
- Channel send exit ExitSpace field
 - Used to reserve space in network transmission buffers for send exits
 - Always zero on z/OS
- No publish exit on z/OS
- z/OS exits have MQXWAIT
 - Necessary because process/thread model for channels is different

Administration

- Attributes and ini files
 - Some items are queue manager attributes on one platform but not other
 - z/OS has lots related to its storage
- Some unique object types
 - z/OS has STGCLASS and CFSTRUCT
 - Distributed has SERVICES and COMMINFO
- Startup
 - CSQZPARM is assembled/linked and other inputs run during startup
 Reset configuration, define default objects etc
 - On Distributed, standard objects are created by qmgr creation and updated during migration

Object Attributes – Queue Manager

- Apart from shared queue and storage-related attributes ...
 - Various events differ as shown in other charts
 - Some z/OS attributes are in qm.ini for Distributed
- z/OS only
 - ACTCHL, MAXCHL
 - ADOPTCHK/ADOPTMCA
 - CHIDISPS, CHIADAPS
 - DNSGROUP, DNSWLM
 - EXPIRYINT
 - GROUPUR
 - IGQ, IGQAUT, IGQUSER
 - LSTRTMR,LU62ARM, LU62CHL, OPORTMIN, OPORTMAX, RCVTMIN, RCVTTYPE, TCPNAME, TCPKEEP, TCPSTACK
 - SCYCASE
 - SSLTASKS
 - TRAXSTR, TRAXTBL
- Distributed only
 - ACCTCONO, ACCTINT, ACCTMQI, ACCTQ
 - ACTIVREC
 - CCSID
 - CERTVPOL
 - CHAD

SCHINIT SCHOOLDV

Object Attributes – Queues and Channels

- Apart from shared queue and storage-related attributes ...
- Queue
 - DEFTYPE(SHAREDYN) z/OS
 - HARDENBO only effective on z/OS
 - INDXTYPE z/OS
 - DISTL Distributed
 - NPMCLASS Distributed
 - SCOPE Distributed only, but obsolete
 - STATQ Distributed
 - TriggerData for transmission queues can be blank on Distributed, names channel on z/OS
- Channel
 - CONNAME 48 characters on z/OS, 264 elsewhere
 - Format of exit names and exit data is platform-specific
 - STATCHL Distributed only before V8

- Message Expiry
 - z/OS has explicit config for timing of task to remove expired messages
 - Distributed has a similar task but no documented configuration
- Security Cache Scavenger
 - z/OS has parameters to control authority cache lifetime
 - No equivalent on Distributed; use REFRESH SECURITY explicit command
- Storage Scavengers
 - z/OS has tasks to release bufferpool and pageset storage
 - Distributed will release queue file storage at intervals
- Queue Indexing
 - z/OS has explicit indexes on queues to assist with retrieval patterns
 - Distributed has hashing to perform similar role but no documented configuration

Intercommunication and Clusters

- Channels are the same
- Clustering is essentially the same across all platforms
- MQ 7.5 introduced concept of multiple cluster transmission queues
 - Made common in V8

Security (1)

- Authentication feature added in V8
 - Distributed supports userid validation in operating system and explicit LDAP
 - z/OS supports userid validation in operating system
 - Both support LDAP when transparently used by OS
- SSL/TLS configuration
 - Distributed (mostly) qmgr uses gskit toolkit
 - z/OS qmgr uses System SSL
 - Can lead to discrepancies in crypto algorithms supported
 - Different versions support different algorithms
 - And there may also be client-related discrepancies
 - Java programs rely on JSSE implementations
 - Net programs (from V8) can use Microsoft inbuilt implementations
 - NSS client uses OpenSSL
 - There is a good common overlap between all of these, but not identical sets

- z/OS
 - Uses system-provided interface for authorization
 - SAF is common API to RACF, Top Secret, ACF2
 - Has to work with the 4 permissions available in SAF
 - No distinction between PUT and GET
 - > Often alias queues are used to isolate permissions
 - Granular control of "impersonation" (setting context, alt-user)
 - One operation may result in several authorization queries
- Distributed
 - MQ-provided authorisation interface
 - Implemented in the OAM
 - Many permissions on objects
 - Global controls on impersonation
 - > If you have authority to use alt-user, there are no constraints on which user
 - Well-known "mqm" id for full authority

Commands

- Basic OS-level commands are different
 - Create, start, stop, delete queue manager procedures
 - Distributed has command-line interface
 - z/OS has JCL
- Issuing configuration commands like ALTER QLOCAL
 - Distributed has runmqsc shell
 - z/OS has ISPF panels for most commands
 - And the +cpf commands for runmqsc equivalence
 - MQ Explorer is product-provided common GUI
- Common programming interface (PCF) for configuration commands
 - z/OS requires an "extended" format which may have multiple sets of responses
 - Supporting a Queue Sharing Group environment
 - Distributed supports the same format but not the default
 - Differences are hidden in the Java PCF classes

MQSC Commands

- Some commands not available in all platforms
 - Apart from those related to OS-specific features
- RESET QSTATS is only on z/OS
 - PCF available on all platforms
- ARCHIVE LOG is only on z/OS
 - even though Distributed also have logs
- DISPLAY SYSTEM
- MOVE QLOCAL
 - V8 has dmpmqmsg
- DISPLAY QMSTATUS
 - Some items have z/OS specific commands like DISPLAY CMDSERV
- STOP CONN only on Distributed
 - All platforms have STOP CHL to kill client connections
- Some z/OS MQSC have command-line equivalents on Distributed
 - STOP QMGR == endmqm

Monitoring

- Many queue manager event messages are common
 - For example, queue full
- But not every event is on every platform
 - Authorisation, Logging, and Channel auto-definition events are Distributed only
 - IMS Bridge events are only on z/OS
- Recording queue manager and application activity is very different
 - z/OS has SMF 115 and 116 records
 - Distributed has accounting, statistics and application activity events
- Distributed accounting and stats events are analogous to SMF 116
 - No equivalent to 115 records

Events Images

General Extended Cluster Repository Communication	Events		
	Authority events:	Disabled	
	Inhibit events:	Disabled	
vents	Local events:	Disabled	
SSL Statistics Online monitoring Accounting monitoring Channels	Remote events:	Disabled	
	Start and stop events:	Enabled	
	Performance events:	Disabled	
^p ublish/Subscribe	Command events:	Disabled	
	Channel events:	Disabled	
	SSL events:	Disabled	
	Configuration events:	Disabled	
	Bridge events:	Disabled	

General	Events			
Extended		, ,	_	
Exits	Authority events:	Disabled		
Cluster Repository	Inhibit events:	Disabled		
Communication	Local events:	Disabled		
Events SSL	Remote events:	Disabled		
Statistics	Start and stop events:	Enabled		
Online monitoring Statistics monitoring	Performance events:	Disabled		
Accounting monitoring	Command events:	Disabled		
Log				
XA resource managers	Channel events:	Disabled		
Installable services Channels	Channel auto definition events:	Disabled		
ТСР	SSL events:	Disabled		
LU6.2 NetBIOS	Logger events:	Disabled		
SPX	Configuration events:	Disabled		
Publish/Subscribe				

- On Distributed, there are several places to look for PD information
 - Error logs written to /var/mqm/errors and /var/mqm/qmgrs/<qmgr>/errors
 - FFST written to /var/mqm/errors for serious errors
 - Trace provided by MQ commands and written to /var/mqm/trace
- On z/OS, also numerous places to follow the clues:
 - The MSTR and CHIN JES log
 - Should always be the first place to look
 - MQ API trace (aka user parameter trace) a GTF trace
 - SMF 115 statistical information
 - SMF 116 class(3) accounting (task related) data
 - A dump for serious problems

Backup

- MAKEDEF and dmpmqcfg are tools to backup configuration
 - With V8, have dmpmqmsg (CSQUMSG ??) to backup messages
- On Distributed, backup of log files is done by stopping qmgr and copying /var/mqm/log directory
 - rcdmqing takes images of queues into logs
- On z/OS, full and fuzzy backups of pagesets are supported
- CFSTRUCT backup required for QSG
 - takes image of shared queue into logs

High Availability and Disaster Recovery

- Shared queues on z/OS for continuous processing
- On Distributed, MQ provides multi-instance
 - Not on z/OS because ARM is provided
- Cross-site DR will usually use disk replication for any platform

Summary

- Title asks about oil and water
- Perhaps (olive) oil and (balsamic) vinegar is better description
 - Blending together