
1

2

It would be nice if we could place all the queues in one place. We could then add

processing capacity around this single Queue manager as required and start multiple

servers on each of the processors. We would incrementally add processing capacity to

satisfy increased demand. We could manage the system as a single entity. A client

application would consider itself to be talking to a single Queue manager entity.

Even though this is highly desirable, in practice it is almost impossible to achieve. Single

machines cannot just have extra processors added indefinitely. Invalidation of processor

caches becomes a limiting factor.

Most systems do not have an architecture that allows data to be efficiently shared

between an arbitrary number of processors. Very soon, locking becomes an issue that

inhibits scalability of the number of processors on a single machine. These systems are

known as "tightly coupled" because operations on one processor may have a large effect

on other processors in the machine cluster.

By contrast, "loosely coupled" clusters (e.g. the Internet) have processors that are more or

less independent of each other. Data transferred to one processor is owned by it and is not

affected by other processors. Such systems do not suffer from processor locking issues. In

a cluster solution, there are multiple consumers of queues (client queue managers) and

multiple providers of queues (server queue managers). In this model, for example, the

black queue is available on multiple servers. Some clients use the black queue on both

servers, other clients use the black queue on just one server.

3

A cluster is a loosely coupled system. Messages flow from clients to servers and are

processed and responses messages sent back to the client. Servers are selected by the

client and are independent of each other. It is a good representation of how, in an

organization, some servers provide many services, and how clients use services provided

by multiple servers.

The objective of WebSphere MQ clustering is to make this system as easy to administer

and scale as the Single Queue Manager solution.

3

4

Consider a client using the queue that is available in the cluster on three server queue

managers. A message is MQPUT by the client and is delivered to *one* of the servers. It

is processed there and a response message sent to a ReplyToQueue on the client queue

manager.

 In this system, if a server becomes unavailable, then it is not sent any further messages.

If messages are not being processed quickly enough, then another server can be added to

improve the processing rate.

 It is important that both these behaviors are achieved by existing MQI applications, i.e.

without change. It is also important that the administration of clients and servers is easy.

It must be straight forward to add new servers and new clients to the server.

 We see how a cluster can provide a highly available and scalable message processing

system.

The administration point in processing is MQOPEN as this is when a queue or queue

manager is identified as being required by an application.

Note that only one message is sent to a server; it is not replicated three times, rather a

specific server is chosen and the message sent there. Also note that MQGET processing is

still local, we are not extending MQGET into the network.

5

Any MQ admin will agree that managing the MQ objects in a complex network can be

very cumbersome. The few the objects, the easier it is to manage both a static MQ

network and a growing one.

6

In a clustered environment, the number of objects to be defined is reduced to 16. This is

due to the fact that the only one cluster sender and cluster receiver channel is needed, and

no transmission queues or remote queue definitions are necessary.

With this type of configuration, the risk of making errors in defining transmission queues

and remote queue definitions is eliminated.

7

MQ will automatically create and destroy certain objects, as they are needed for

clustering. The TWO main type of objects created are cluster channels and cluster

queues.

MQ Channels are the number one cause of administrative frustration. MQ Clustering

relieves some of those burdens by managing them for us.

To reduce the level of complexity, we only need one CLUSSDR and one CLUSRCVR.

Once these channels are defined, MQ will automagically create the other subsequent

channels to the other qmgrs in the cluster

REMOTE QUEUES:

Queues that are defined as cluster queues are automatically made available to the all the

queue managers in the cluster. What happens locally is that MQ dynamically creates a

remote queue definition on the local qmgr. These queues are can be displayed using MQ

Explorer and will appear as “local cluster queues”.

8

At least 2 qmgrs are needed for to be FULL repos qmgrs for availability purproses. A full

repository cntains information about all the qmgrs in a cluster, including the qmgr names,

locations, their channelswhat queues they host, etc.

9

Cluster queues can be defined by users. Create as local and add it to a cluster.

In addition, a system default “cluster transmission queue’ is automatically created when

you create a a new qmgr. This queue is similar to the user-defined transmission queue but

it does take precedence over it in cases where the target queue is resolved via the

repository.

10

11

12

13

14

15

16

17

 Full Repositories must be fully connected with each other using manually defined cluster

sender channels.

 You should always have at least 2 Full Repositories in the cluster so that in the event of a

failure of a Full Repository, the cluster can still operate. If you only have one Full

Repository and it loses its information about the cluster, then manual intervention on all

queue managers within the cluster will be required in order to get the cluster working

again. If there are two or more Full Repositories, then because information is always

published to and subscribed for from 2 Full Repositories, the failed Full Repository can

be recovered with the minimum of effort.

 Full Repositories should be held on machines that are reliable and highly available. This

said, if no Full Repositories are available in the cluster for a short period of time, this

does not affect application messages which are being sent using the clustered queues and

channels, however it does mean that the clustered queue managers will not find out about

administrative changes in the cluster until the Full Repositories are active again.

 For most clusters, 2 Full Repositories is the best number to have. If this is the case, we

know that each Partial Repository manager in the cluster will make its publications and

subscriptions to both the Full Repositories.

 It is possible to have more than 2 Full Repositories.

 The thing to bear in mind when using more than 2 Full Repositories is that queue

managers within the cluster still only publish and subscribe to 2. This means that if the 2

Full Repositories to which a queue manager subscribed for a queue are both off-line, then

18

that queue manager will not find out about administrative changes to the queue, even if

there are other Full Repositories available.

If the Full Repositories are taken off-line as part of scheduled maintenance, then this can

be overcome by altering the Full Repositories to be Partial Repositories before taking

them off-line, which will cause the queue managers within the cluster to remake their

subscriptions elsewhere.

 If you want a Partial Repository to subscribe to a particular Full Repository queue

manager, then manually defining a cluster sender channel to that queue manager will

make the Partial Repository attempt to use it first, but if that Full Repository is

unavailable, it will then use any other Full Repositories that it knows about.

 Once a cluster has been setup, the amount of messages that are sent to the Full

Repositories from the Partial Repositories in the cluster is very small. Partial Repositories

will re-subscribe for cluster queue and cluster queue manager information every 30 days

at which point messages are sent. Other than this, messages are not sent between the Full

and Partial Repositories unless a change occurs to a resource within the cluster, in which

case the Full Repositories will notify the Partial Repositories that have subscribed for the

information on the resource that is changing.

 As this workload is very low, there is usually no problem with hosting the Full

Repositories on the server queue managers. This of course is based on the assumption that

the server queue managers will be highly available within the cluster.

 This said, it may be that you prefer to keep the application workload separate from the

administrative side of the cluster. This is a business decision.

18

 The previous slide gave the ‘standard’ rules and reasons for working with full repository,

but here are some tips based on the way people really tend to work with them and some

common issues:

 There is no reason applications cannot happily run on a queue manager which is acting

as a full repository, and certainly the original design for clustering assumes this will

probably be the case.

HOWEVER, many people actually prefer to keep FRs dedicated to just maintaining the

cluster cache, for various reasons:

– When any application in the cluster wants to use new features, can upgrade FRs without

having to test ALL co-located applications

– If for some reason you need to apply urgent maintenance to your full repositories they

can be restarted or REFRESHed without touching applications

– As clusters grow and demands on cache maintenance become heavier, there is no risk of

this affecting application performance (through storage, CPU demands for example)

– Full repositories don’t actually need to be hugely powerful – a simple Unix server with

a good expectation of availability is sufficient.

 Maintenance:

– This is precisely the sort of reason you want 2 full repositories. The cluster will

continue to function quite happily with one repository, so where possible bring them

down and back up one at a time. Even if you experience an outage on the second, running

applications should be completely unaffected for a minimum of three days

19

Moving full repositories

– Is a bit trickier than moving a regular queue manager. The migration foils look into this

further.

19

20

One of the big shifts to note here is from allowing the queue manager to continue without

a running repository manager. When the repos manager encounters a critical error it will

now go into ‘retry’ for a few days, issuing warnings with a countdown timer, before

shutting down the

queue manager.

This is important because without a repository manager the cluster cache will grow ‘stale’

and applications may suddenly experience outages sometime in the future, when the root

cause may be near impossible to diagnose.

Get-Inhibiting the SYSTEM.CLUSTER.COMMAND.QUEUE suspends this process

allowing the administrator to go away and resolve the issue (e.g. fix underlying hardware

problem, contact IBM service).

21

22

23

24

25

26

A new tool amqsclm is provided to ensure messages are directed towards the instances of

clustered queues that have consuming applications currently attached. This allows all

messages to be processed effectively even when a system is asymmetrical (i.e. consumers

not attached everywhere).

– In addition it will move already queued messages from instances of the queue where no

consumers are attached to instances of the queue with consumers. This removes the

chance of long term marooned messages when consuming applications disconnect.

 The above allows for more versatility in the use of clustered queue topologies where

applications are not under the direct control of the queue managers. It also gives a greater

degree of high availability in the processing of messages.

 The tool provides a monitoring executable to run against each queue manager in the

cluster hosting queues, monitoring the queues and reacting accordingly.

– The tool is provided as source (amqsclm.c sample) to allow the user to understand the

mechanics of the tool and customise where needed.

 This sample was introduced in WMQ 7.1 (distributed platforms), but has been

backported to WMQ 7.0.1 fixpack 8.

27

28

29

30

This has been a very long standing requirement from a number of customers

 All the reasons on this slide are valid, but the number one reason often quoted in

requirements was ‘performance’

– In reality splitting out the transmit queue does not often buy much here, hence often

other solutions (e.g. improving channel throughput) were really needed.

 Main reason for delivery now is to allow application separation

31

32

33

34

35

