So You Think You
Understand Multi-Instance

Queue Managers?

A) -1 JU) ~ |—',_r .
Crrlstoorner Frang
IBM WeoSonere Connectivity

crrlsiracs.lom.corr

Capitalware's MQ Technical Conference v2.0.1.4

Introduction

= Topics to be covered in this presentation:
» Brief overview of multi-instance queue manager support and its role as an HA solution
» How to validate the file system for use with multi-instance queue managers
» File system requirements and why they are what they are
» Queue manager status
» How file locking is used
» Liveness checking
» Troubleshooting

» Summary

D

Capitalware's MQ Technical Conference v2.0.1.4

D
High Availability Options for MQ

= High availability managers
» Products designed to provide comprehensive system high availability
» Can cover multiple products — MQ, 11B, DB2, Oracle, WAS etc.
» Requires an HA manager such as

e HACMP for AIX

e ServiceGuard for HP

e Solaris Cluster

e Veritas Cluster Server

e MSCS for Windows Server
e Linux-HA

» Multi-instance support for MQ and IBM Integration Bus
» Provides basic failover for MQ and WMB/IIB only
> Software only
» Comes out of the box — no external HA coordinator needed

D

Capitalware's MQ Technical Conference v2.0.1.4

HA Cluster Coordination behavior (1)

1. Normal
network
HA coordin \
i
IP Address
Machine A Machine B

@ —>

shared disks

Critical data persisted on shared disks

e 1y

Capitalware's MQ Technical Conference v2.0.1.4

HA Cluster Coordination behavior (2)

2. Disaster

Stri kes - -
| network

Machine B

HA coordin

[Falsover >

shared disks

e 1y

Capitalware's MQ Technical Conference v2.0.1.4

HA Cluster Coordination behavior (3)

3. Active and
Standby roles
reversed.
network

|
IP Address

Machine B

Critical data persisted on shared disks

e 1y

Capitalware's MQ Technical Conference v2.0.1.4

shared disks

Multi-instance queue manager behavior (1)

1. Normal
Execution

' IPA

Machine A

Owns the queue manager data

network

@« —
=

networked storage

..

IPB i

Machine B

QM1
Standby
instanc

Capitalware's MQ Technical Conference v2.0.1.4

Multi-instance queue manager behavior (2)

2. Disaster
strikes

00 000sirsceseescsssssssssssosscsscsossososscscscscsccscccccny

network

L

Machine B

s> &
]

networked storage

Capitalware's MQ Technical Conference v2.0.1.4

Multi-instance queue manager behavior (3)

3. Standby
instance leaps
into action

network

IPB i

Machine B
networked storage

Owns the iueue manaier data

Capitalware's MQ Technical Conference v2.0.1.4

Multi-instance queue manager behavior (4)

4. Recovery
complete —
clients
reconnect network

L

Machine B

networked storage

Owns the queue manager data

Capitalware's MQ Technical Conference v2.0.1.4

What Multi-instance queue managers provide

m Basic failover support without separate HA coordinator
» Failover support for queue manager only
» No data or IP failover

= Queue manager data is held in networked storage (NAS, not SAN)
» Multiple machines see the queue manager data
» Multi-instance support requires lease-based file locking

e NFS v4, GPFS, GFS2, CIFS (Windows only)

= Allows starting multiple (two) instances of a queue manager on different
machines
» One instance is “active” — the other instance is “standby”
» Active instance “owns” the queue manager’s files

e Will accept connections from applications
» Standby instance does not “own” the queue manager’s files

e Applications cannot connect to standby instance

e [f the active instance fails, performs queue manager restart and becomes active
» Instances share the data, so it's the SAME queue manager

D

Capitalware's MQ Technical Conference v2.0.1.4

What is a “Standby Instance”?

= A standby queue manager instance is essentially a queue manager paused
in the early stages of queue manager startup

= |t does not “own” the queue manager’s files and therefore is not capable of
doing message processing

= “strmgm —x” is used to start an instance of a multi-instance queue
manager
» The first instance will be the active instance
» The second instance will be the standby instance
» Additional instances are not permitted

= A standby instance:
» Polls file locks held by the active instance every 2 seconds
e Tuning Parameter available to alter this if needed
» A standby instance also is responsive to requests to end (“endmgm —x”)

» A standby instance is responsive to requests by applications trying to connect, but it
rejects them

D

Capitalware's MQ Technical Conference v2.0.1.4

Support for Network Filesystems

= As of MQ V7.0.1 support for network filesystems was properly integrated
» Any “modern” network filesystem protocol with “proper” semantics supported

e NFS v4 (not v3), CIFS (Windows only), GPFS, GFS2, etc

= File systems such as NFS V4 provide leased-based file locking
» Can detect failures and then release locks following a failure.
» Older file systems such as NFS V3 do not have a reliable mechanism to release locks
after a failure

e Thus NFS V3 must not be used with multi-instance queue managers
e NFS v4 and also GPFS, GFS2, CIFS (for Windows only) can be used

= NFS v3 will generally work for MQ
» But it's not adequate for multi-instance queue managers
» So NFS v3 is NOT SUPPORTED (no, not ever) by multi-instance queue managers

= Not all NFS v4 implementations are supported
» They must behave strictly according to Posix rules
» They must meet certain configuration requirements
» A tool is provided to validate configuration (amgmfsck)

D

Capitalware's MQ Technical Conference v2.0.1.4

Validating the filesystem for MIQM (1)

= amgmfsck is a tool which checks out the filesystem

= The minimum steps to validate the file system are:
» amgmfsck /shared/gmdata

e This checks basic POSIX file locking behavior
» amgmfsck -w /shared/gmdata

e Use on two machines at the same time to ensure that locks are handed off correctly when a
process ends.

» amgmfsck -c /shared/qmdata
e Use on two machines at the same time to attempt concurrent writes.

= The following can be used to shows whether the logger can guarantee data integrity.
» amgmfsck [-f NumberOfPages] -i /shared/gmdata

e Use on two machines at the same time, then do something dreadful to the first one, then run a
third instance to analyse the wreckage.

= The top three steps are the minimum checks that should be performed

= Where we have put a restriction in the SOE, one of these tests fails.

D

Capitalware's MQ Technical Conference v2.0.1.4

Validating the filesystem for MIQM (2)

= |f one or more tests fail, the file system is not capable of supporting multi-
instance queue managers

» Run the tests using the verbose option (“-v”) to help you interpret the errors

e This will help you understand why the command failed, and whether the file system
can be reconfigured to address the problem.

» Failures caused by access control problems are not uncommon
® These can usually be addressed by changing directory ownership or permissions.

» Failures can also result from specific file system configuration options

e These can often be addressed by reconfiguring the file system to behave in a
different way.

— File system performance options can fall into this category

— Resolving usually requires working closely with team that understands the
underlying file system

D

Capitalware's MQ Technical Conference v2.0.1.4

Validating the filesystem for MIQM (3)

= |f the tests are successful, the following is returned:

“The tests on the directory completed successfully”

= Note that this is no guarantee!
» The file system can pass the checks but problems can still occur when doing so.
» Also, environments not listed as supported in the Testing and Support statement for
multi-instance queue managers can sometimes pass these tests.
» So it is important that you verify that your environment is not excluded from the testing
and support statement (http://www.ibm.com/support/docview.wss?&uid=swg21433474)

= Be as thorough as possible with your tests
» Plan and run a variety of tests to satisfy yourself that you have covered all foreseeable

circumstances.
» Some failures are intermittent, and there is a better chance of discovering them if you run

the tests more than once.
» More detailed guidance on using the amgmfsck command can be found in the Technote

at: http://www.ibm.com/support/docview.wss?uid=swg21446194.

Capitalware's MQ Technical Conference v2.0.1.4

Shared File System Requirements

= Data write integrity
» The queue manager must know that written data is successfully committed to the physical device
» Transactional system like MQ require that some writes be safely committed before continuing with
other processing

= Guaranteed exclusive access to files
» In order to synchronize multiple queue manager instances, a mechanism for obtaining an exclusive
lock on a file is required

= Release of locks on failure
» If a queue manager fails, a file system or network error to the file system occurs, etc, files locked by
the queue manager need to be unlocked and made available to other processes
» Must be possible without waiting for a failing queue manager to be reconnected to the file system.

= A shared file system must meet these requirements for WebSphere MQ to operate
reliably
» If it does not, the queue manager data and logs get corrupted when using the shared file system
» These are fundamental requirements in order to ensure that messages are reliably written to the
recovery log
» These are requirements (NOT recommendations or suggestions)!

= Requirements if you are using the NFS V4 as the shared file system:
» Hard mounts, synchronous writing and write caching must be disabled

D

Capitalware's MQ Technical Conference v2.0.1.4

Why Hard Mounts?

= Soft versus Hard Mounting
» Govern the way the NFS client handles a server crash or network outage
» Key advantage of using NFS is that it can handle this gracefully
» Allow an application (MQ in this case) to KNOW the state of a failed write

= Hard Mounts
» When accessing a file on an NFS hard mount, if the server crashes MQ will hang

* This is the good (for us) effect of a hard mount
e When the NFS server is back online the NFS client can reconnect and continue
— Or if MQ fails the other instance can have a go at it

= Soft Mounts
> If a file request fails, the NFS client will not hang; it will (maybe) report an error
» But there is no guarantee that the file request did not actually write some data

e This is a recipe for corrupted files and lost data
» You can only use soft mounts safely if you don't care that you might lose some data

e MQ does not (cannot) tolerate this

® For this reason, multi-instance will not tolerate soft mounts

D

Capitalware's MQ Technical Conference v2.0.1.4

Why Sync (rather than async)?

These options determine how data is written to the server on a client request

= Whatever you do on an NFS client is converted to an RPC equivalent operation
» So that it can be send to the server using RPC protocol
» How these calls are handled differ when using async vs sync

= Using async permits the server to reply to client requests as soon as it has
processed the request and handed it off to the local file system
» Without waiting for the data to be written to stable storage
» This yields better performance, but at the cost of possible data corruption
e e.g.if the server reboots while still holding unwritten data and/or metadata in its cache
» Async basically instructs the server to "lie" to the client, telling it the data is hardened when it is not
» If async is used MQ may continue to run apparently fine
¢ Because the possible data corruption may not be detectable at the time of occurrence
e But there might be a "hole" in the log, potentially making recovery impossible

= Using sync does the reverse
» The server will reply only after a write operation has successfully completed
» Which means only after the data is completely written to the disk

= You should NEVER use the async option when dealing with critical data
» Data loss happens with async because the client thinks data was committed (server reports that the
write is committed) before it actually is
» If the server crashed before actually committing any data, this would not be known by MQ
» With sync, we KNOW the state of the data on the server, and so can recover cleanly after a failure

D

Capitalware's MQ Technical Conference v2.0.1.4

Why intr (rather than nointr)?

= |In NFS V4, a file operation will normally continue until an RPC error occurs,
or until it has completed successfully
» And if mounted hard, most RPC errors will not prevent the operation from continuing

e Even if the server is down, the process making the RPC call will hang until the
server responds

= intr permits NFS RPC calls to be interrupted
» Forcing the RPC layer to return an error
» For MQ to fail over to a standby instance, RPC calls must be interruptible

= nointr will cause the NFS client to ignore signals
» Including those that would allow a queue manager to fail over

D

Capitalware's MQ Technical Conference v2.0.1.4

What about Attribute Caching?

= npoac (no attribute caching) is recommended
» Suppresses attribute caching and forces file attributes to be kept updated in the NFS
client
» This will guarantee that on a read/write the NFS client will always have the most recent
state of the file attributes

= Under normal circumstances MQ will operate correctly with attribute
caching
» But issues can arise when multiple NFS clients are contending for write access to the
same file

e Such as the NFS clients associated with the active and standby MQ instances

= Cached attributes used by each NFS client for a file might differ
» An example of files accessed in this way are queue manager error logs
» Error logs might be written to by both an active and a standby instance
» Result can be that the error logs grow larger than expected before they roll over

= Because of this, noac is recommended

» You can use the NFS ac* options to try and fiddle with this
» But it's probably more trouble than it's worth

D

Capitalware's MQ Technical Conference v2.0.1.4

NFS Mount Example (and it’s only an example)

= A typical NFS mount will look something like this:

us-0a00-nas01t:/mqgrt_reg01 /nas/mgm/mqrt_reg01 nfs
rw,bg,sync,hard,intr,rsize=131072,wsize=131072,tcp,noac,vers=4

= Critical to note:
» Hard (required)
» Sync (required)
» intr (required)
» noac (recommended)

= An NFS mount can have many other options
» These can vary from vendor to vendor
» So there is no “standard” or “recommended” configuration beyond those required
» Work with your file system staff and vendor(s) to get the best performance and stability

D

Capitalware's MQ Technical Conference v2.0.1.4

Checking Queue Manager Status (1)

= The dspmg command will identify instance status and mode:

C:\> dspmq -x

OMNAME (chris) STATUS (Running)
INSTANCE (MPLS1A) MODE (Active)
INSTANCE (MPLS1B) MODE (Standby)

= This is a multi-instance queue manager with two instances
» The active instance on MPLS1A and the standby instance on MPLS1B

e 1y

Capitalware's MQ Technical Conference v2.0.1.4

Checking Queue Manager Status (2)

Queue Manager States

= A multi-instance queue manager has additional status Starting
values that can be reported. Some examples: Running
« . ’ Running as standby
» “Running as standby Running elsewhere
* The queue manager is defined here Quiescing
e There is a standby instance running locally Ending immediately
« ” . . Ending pre-emptively
* |t holds the “standby lock”, polling the master and active Ended normally
locks in anticipation of the failure of the active instance Ended immediately
Ended unexpectedly
» “Running elsewhere” Ended pre-emptively

Status not available

® The queue manager is defined here

e There is no instance running here

® There’s an active instance on another machine
— The master and active locks are held
— gmstatus.ini reports “Running”

= dspmq queries the lock files in order to report the status

Capitalware's MQ Technical Conference v2.0.1.4

Queue manager status — More detail

= gmstatus.ini contains several values related to multi-instance:
» PermitStandby = Yes | No

¢ Indicates whether the active instance was started permitting standby instances

e This is checked when the execution controller wants to become a standby instance
» PermitFailover = Yes | No

¢ Indicates whether a standby instance is permitted to failover when active crashes

® This is used to prevent a queue manager which crashes as it starts up from doing
it again
» PlatformSignature = <numeric>
¢ Indicates which platform owns the data

e Prevents failover between different architectures and OSes
» PlatformString = <string>

e A string version of the platform signature used when reporting a mismatch between
the running code and the gmstatus.ini

D

Capitalware's MQ Technical Conference v2.0.1.4

Lock Files (1)

= Three files are used to ensure single activation and report status:
» master

e Held in exclusive mode by the Execution Controller of the active instance
» active

e Held in shared mode by multiple queue manager processes, plus fastpath
applications
» standby

e Held in exclusive mode by the Execution Controller of the standby instance

= The lock files are used to coordinate the instances and by dspmq to report
status for a multi-instance queue manager

= The master and active locks are held even by a hormal queue manager
» Prevents accidental dual activation, even if multi-instance not being used

D

Capitalware's MQ Technical Conference v2.0.1.4

Lock Files (2)

= An undocumented flag (“f’) on dspmq lets you see the state of the file locks:

C:\> dspmg —-xf
OMNAME (chris) STATUS (Running)
INSTANCE (MPLS1A) MODE (Active)
INSTANCE (MPLS1B) MODE (Standby)
master (MPLS1A,1249388074)
active (MPLS1A,1249388074)
standby (MPLS1B, 1249814329)

= The master, active and standby files contain a little data about the lock holder:
» Hostname
» Lock id (Identifies the queue manager instance)
» Lock time

= When an instance starts, it calculates the lock id which it writes into the lock
files that it owns

e 1y

Capitalware's MQ Technical Conference v2.0.1.4

How are Queue Manager Lock files used?

= Periodically, in a multi-instance queue manager, lock files are reread and if the lock
id doesn’t match, the lock has been stolen

» A lock file should never be stolen, and NFS should renew its leases automatically
without MQ having to repeatedly use the locked files.
e But a queue manager won’t notice a lease expiring unless it periodically rereads its lock file
e So a “verify” thread reads the contents of the master file lock every 10 seconds
— A Tuning Parameter is available to change this if needed
» Because reading a file can block during a network outage, a “monitor” thread ensures
that the verify thread is making progress checking the file
» If the verify thread stalls for 20 seconds, or the reading of the file lock fails, or the lock
owner in the file changes, the queue manager “commits suicide”

AMQ7279: WebSphere MQ queue manager '&3' lost ownership of data lock.

Explanation: The instance of queue manager &4 has lost ownership of a lock on its
data in the file-system due to a transient failure. It was not able to re-obtain the
lock and will stop automatically to prevent the risk of data corruption.

User response: Check that another instance of the queue manager has become active.
Restart this instance of the queue manager as a standby instance. If this problem
recurs, 1t may indicate that the file-system is not sufficiently reliable to support
file locking by a multi-instance queue manager.

D

Capitalware's MQ Technical Conference v2.0.1.4

Other files that are locked

= A multi-instance queue manager takes file locks on other files too:
» The log control file and log extents (exclusive locks)

» The files for queues and other MQ objects (exclusive locks during restart, otherwise
shared locks)

= These locks are an important part of the data integrity of the queue
manager

= Also, NFS V4 performs better when these locks are held
» By holding a lock, data is written more eagerly to the filesystem (less buffering)
» The implication of the lock is that the data is shared between machines

= By holding a lock, you can tell whether a network outage occurred during
which a conflicting lock was granted by the filesystem
» Without these locks, queue manager files (log, etc) could be corrupted

D

Capitalware's MQ Technical Conference v2.0.1.4

Health checking

= Health-checking also takes place between queue manager processes

= The aim is to prevent orphaned processes for a failed queue manager
» Eliminate need for manual cleanup after a failure
» MQ processes and utility managers monitor the health of the Execution Controller

= MQ Processes don’t try and continue on after a failure
» Some of these would just not die
» Effect was often to make failures last longer, rather than avoid them

e 1y

Capitalware's MQ Technical Conference v2.0.1.4

Liveness Checking

= Multi-instance queue managers also have a liveness checking thread
» Only multi-instance queue managers have this
» Ensures that the queue manager is able to do productive work

® e.g. That the logger is making progress with writing log records

» Checks are very carefully handled to ensure QM doesn’t just blow up when it’s very
busy (e.g. when using an external HA solution like Veritas)
» Checks every 60 seconds by default
e A Tuning Parameter is available to change this if needed
» The liveness checking runs on a separate thread and shoots the process issuing the
actual I/0O requests if it takes too long
e This results in the queue manager “committing suicide”

AMQ7280: WebSphere MQ queue manager '&3' appears unresponsive.
Explanation: The queue manager 1is monitoring itself for responsiveness.
It is not responding sufficiently quickly and will automatically stop 1if
it continues to be unresponsive.

D

Capitalware's MQ Technical Conference v2.0.1.4

Problem Diagnosis — File systems

= The first problem that most people encounter is setting up the networked
storage
> uid/gid mismatch
» Incorrect file permissions
» amgmfsck will diagnose these with a sensible message

= |t’s vital that file locking actually works as advertised
» amgmfsck —w is your best friend here (tests waiting and releasing locks)
> It can be used to check that locks are handed off between processes and machines
» Make sure your file system is supported!

e http://www.ibm.com/support/docview.wss?&uid=swqg21433474

= File system and network tuning are important!
» NFS client, NAS server, network, etc
» Poor performance can result in stalls and spurious fail-overs
» NAS remote backup, ETL jobs, etc can also trigger spurious fail-overs

D

Capitalware's MQ Technical Conference v2.0.1.4

Problem Diagnosis — File integrity

= The MQ code has been carefully designed to eliminate file integrity

problems during failover
» However it does depend on the file system behaving correctly
» Some file systems do not pass because they’ve been found to permit a failed write()
call issued before a network outage to manage to write some data after the outage,
even though the call failed

e Can result in log corruption (characterised by a “hole” in the log)

* May never be noticed, but media recovery will stop with “Media image not
available”

e May result in queue corruption if restart processing reads the mangled data

= amgmfsck —i can be used to diagnose this

e |t's essentially the same sequence of calls as the logger and will diagnose an
integrity problem caused by a network outage

D

Capitalware's MQ Technical Conference v2.0.1.4

Problem Diagnosis — “Spurious failovers”™

= Occasionally, customers report spurious queue manager failovers
» Stand-alone queue managers on the same infrastructure would be unaffected

= Could be triggered by the liveness-checks failing
» Stand-alone queue managers do not have this

m Cause is often poor file system performance
» Someone running an ETL job, remote file back-up, etc

Capitalware's MQ Technical Conference v2.0.1.4

Summary

= The Multi-instance feature has been around some time now (5 years)

= File system must be NFS v4, with hard mounting, sync writes, 1/O
interruptible and caching disabled

= Control commands enhanced to report status of multi-instance queue
managers

= File locking used to coordinate between instances on separate machines
= File locking also used to protect queue manager file integrity
= Configuration, monitoring and tuning of underlying file system important

= Problems usually involve file system issues

e 1y

Capitalware's MQ Technical Conference v2.0.1.4

Questions?

e 1y

Capitalware's MQ Technical Conference v2.0.1.4

