
Capitalware's MQ Technical Conference v2.0.1.4

IBM MQ Connection IBM MQ Connection 
AuthenticationAuthentication

Morag Hughson

hughson@uk.ibm.com

Capitalware's MQ Technical Conference v2.0.1.4

Agenda
� Requests for Enhancement

� Connection Authentication
� Configuration
� Application Changes (or not)
� Protecting your password across a network
� User Repositories



Capitalware's MQ Technical Conference v2.0.1.4

Request for Enhancement (22568)

Capitalware's MQ Technical Conference v2.0.1.4

Request for Enhancement (30709)



Capitalware's MQ Technical Conference v2.0.1.4

Connection Authentication – What is it?
� The ability for an application to provide a user ID  

and password
� Client
� Local Bindings

� Some configuration in the queue manager to act 
upon said user ID and password

� A user repository that knows whether the user ID 
and password are a valid combination

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2) QMgr

Network

Com
m

unications

Inter process 
Communications

User
Repository

Authority
Checks

Q1

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Connection Authentication – What is it? – Notes

� This picture shows the landscape we’re going to use to discuss various patterns 
and then the changes in WebSphere MQ V8 in order to support these patterns. Just 
to ensure everyone is familiar with the parts on the diagram we’ll briefly look at 
them first from left to right.

� On the left of this picture we see applications making connections, one as a client 
and one using local bindings. These applications could be using a variety of 
different APIs to connect to the queue manager, but all have the ability to provide a 
user ID and a password. The user ID that the application is running under (the 
classic user ID presented to WebSphere MQ) may be different from the user ID 
provided by the application along with its password, so we illustrate both on the 
diagram.

� In the middle we have a queue manager with configuration commands and 
managing the opening of resources and the checking of authority to those 
resources. There are lots of different resources in WebSphere MQ that an 
application may require authority to, in this diagram we are just going to use the 
example of opening a queue for output, but the same applies to all others.

� On the right we have a representation of a user repository – i.e. containing user IDs 
and passwords, more on this later.



Capitalware's MQ Technical Conference v2.0.1.4

REQDADM

REQUIRED

OPTIONAL

NONE

CHCK…

Configuration

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2) QMgr

Network

Com
m

unications

Inter process 
Communications

ALTER QMGR CONNAUTH(USE.PW)

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx) 
FAILDLAY(1) CHCKLOCL(OPTIONAL) 
CHCKCLNT(REQUIRED)

REFRESH SECURITY TYPE(CONNAUTH)

MQRC_NOT_AUTHORIZED (2035)

MQRC_NONE (0)

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Configuration – Notes 
� We’ll start with the basic configuration side of things. How do I turn on this connection 

authentication feature on the queue manager.
� On the queue manager object there is a new attribute called CONNAUTH (short for 

connection authentication) which points to an object name. The object name it refers to is an 
authentication information object – one of two new types. There are two existing types of 
authentication information objects from earlier releases of WebSphere MQ, these original two 
types cannot be used in the CONNAUTH field.

� The two new types are similar in quite a few of the basic attributes so we will look at those 
first. We’ll come back to more of the attributes later. We show here a new authentication 
information object which has two fields to turn on user ID and password checking, 
CHCKLOCL (Check Local connections) and CHCKCLNT (Check Client connections). 
Changes to the configuration of this must be refreshed for the queue manager to pick them 
up.

� Both of these fields have the same set of attributes, allowing for a strictness of checking. You 
can switch it off entirely with NONE; set it to OPTIONAL to ensure that if a user ID and 
password are provided by an application then they must be a valid pair, but that it is not 
mandatory to provide them – a useful migration setting perhaps; set it to REQUIRED to 
mandate that all applications provide a user ID and password; and, only on Distributed, 
REQDADM which says that privileged users must supply a valid user ID and password, but 
non-privileged users are treated as per the OPTIONAL setting.

� Any application that does not supply a user ID and password when required to, or supplies an 
incorrect combination even when it is optional will be told 2035 (MQRC_NOT_AUTHORIZED). 
N.B. When password checking is turned off using NONE – then invalid passwords will not be 
detected.



Capitalware's MQ Technical Conference v2.0.1.4

Connection Failure Delay

MQCONNX
User1 + pwd1

Application (User2) QMgr

Connection

ALTER QMGR CONNAUTH(USE.PW)

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx) 
FAILDLAY(1) CHCKLOCL(OPTIONAL) 
CHCKCLNT(REQUIRED)

REFRESH SECURITY TYPE(CONNAUTH)

MQRC_NOT_AUTHORIZED (2035)

seconds

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Connection Failure Delay - Notes
� Any failed authentications will be held for the number of seconds in the FAILDLAY 

attribute before the error is returned to the application – just some protection 
against a busy loop from an application repeatedly connecting.



Capitalware's MQ Technical Conference v2.0.1.4

User's Digital 
Certificate

CA Sig

Configuration Granularity

MQCONNX
User3 + pwd3

Application (User4)

QMgr

Clear Network

Com
m

unications

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx) 
CHCKCLNT(OPTIONAL)

SET CHLAUTH(‘*’) TYPE(ADDRESSMAP) ADDRESS(‘*’) 
USERSRC(CHANNEL) CHCKCLNT(REQUIRED)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP) 
SSLPEER(‘CN=*’) USERSRC(CHANNEL) 
CHCKCLNT(ASQMGR)MQRC_NOT_AUTHORIZED (2035)

MQCONNX
User1 + pwd1

Application (User2)

MQRC_NONE (0)

SSL/TLS Network 
Communications

REQDADM

REQUIRED

ASQMGR

CHCKCLNT

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Configuration Granularity – Notes 
� In addition to the two fields that turn this on overall for client and locally bound 

applications, there are enhancements to the CHLAUTH rules so that more specific 
configuration can be made using CHCKCLNT. You can set the overall CHCKCLNT 
value to OPTIONAL, and then upgrade it to be more stringent for certain channels 
by setting CHCKCLNT to REQUIRED or REQDADM on the CHLAUTH rule. By 
default, CHLAUTH rules will run with CHCKCLNT(ASQMGR) so this granularity 
does not have to be used.



Capitalware's MQ Technical Conference v2.0.1.4

Relationship to Authorization

MQCONNX
User3 + pwd3

MQOPEN

Application (User4)

MQCONNX
User1 + pwd1

MQOPEN

Application (User2) QMgr

Network

Com
m

unications

Inter process 
Communications

Authority
Checks

ALTER QMGR CONNAUTH(USE.PWD)

DEFINE AUTHINFO(USE.PWD) AUTHTYPE(xxxxxx) 
CHCKLOCL(OPTIONAL) CHCKCLNT(REQUIRED) 
ADOPTCTX(YES)

Q1: User4 +none

Q1: User3 +get

Q1: User2 +none

Q1: User1 +put

Authority Records

Q1

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Relationship to Authorization – Notes
� So we have seen that we can configure our queue manager to mandate user IDs and 

passwords are provided by certain applications. We know that the user ID that the application 
is running under may not be the same user ID that was presented by the application along 
with a password. So what is the relationship of these user IDs to the ones used for the 
authorization checks when the application, for example, opens a queue for output.

� There are two choices, in fact, controlled by an attribute on the authentication information 
object – ADOPTCTX.

� You can choose to have applications provide a user ID and password for the purposes of 
authenticating them at connection time, but then have them continue to use the user ID that 
they are running under for authorization checks. This may be a useful stepping stone when 
migrating, or even a desirable mode to run in, perhaps with client connections, because 
authorization checks are being done using an assigned MCAUSER based on IP address or 
SSL/TLS certificate information.

� Alternatively, you can choose the applications to have all subsequent authorization checks 
made under the user ID that you authenticated by password by selecting to adopt the context 
as the applications context for the rest of the life of the connection.

� If the user ID presented for authentication by password is the same user ID that the 
application is also running under, then of course this setting has no effect.



Capitalware's MQ Technical Conference v2.0.1.4

Adopting User - Interaction with CHLAUTH

This will be over-ridden by anything else. Rarely do you want 
to trust an unauthenticated client side user ID.

Client machine user ID flowed to 
server

NotesMethod

A handy trick to ensure that the client flowed ID is never used 
is to define the MCAUSER as ‘rubbish’ and then anything 
that is not set appropriately by one of the next methods 
cannot connect.

MCAUSER set on SVRCONN 
channel definition

The queue manager wide setting to adopt the password 
authenticated user ID as the MCAUSER will over-ride either 
of the above.

MCAUSER set by ADOPTCTX(YES)

To allow more granular control of MCAUSER setting, rather 
than relying on the above queue manager wide setting, you 
can of course use CHLAUTH rules

MCAUSER set by CHLAUTH rule

Although CHLAUTH gets the final say on whether a 
connection is blocked (security exit not called in that case), 
the security exit does get called with the MCAUSER 
CHLAUTH has decided upon, and can change it.

MCAUSER set by Security Exit

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Adopting User - Interaction with CHLAUTH - Notes

� There are numerous ways that the running user can be set for a SVRCONN 
channel, i.e. the user which is representing the client application when it is running 
on the queue manager machine. The ADOPTCTX(YES|NO) attribute that we just 
saw is yet another one. How do all these different ways of setting the MCAUSER on 
the SVRCONN interact.

� There is an order of events and certain ways of setting the MCAUSER over-ride 
others. The table shows the order.



Capitalware's MQ Technical Conference v2.0.1.4

Application changes
� Code changes

� Procedural – MQCSP on MQCONNX
� OO classes – MQEnvironment
� JMS/XMS – createConnection
� XAOpen string

� Alternatively Exits can provide MQCSP
� Client side security exit

� Provided
� Client side Pre-conn exit

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2) QMgr

Network

Com
m

unications

Inter process 
Communications

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Application changes – Notes
� Since WebSphere MQ V6.0, an application has been able to provide a user ID and password (in the 

Connection Security Parameters (MQCSP) structure in the MQCNO) at MQCONNX time. These were 
passed to a user written plug-point in the OAM on distributed to be checked. If the application was running 
client bound, this user ID and password were also passed to the client side and server side security exits for 
processing and can be used for setting the MCAUser attribute of a channel instance. The security exit is 
called with ExitReason MQXR_SEC_PARMS for this processing.

� This pre-existing feature of the MQI is being used to provide the user ID and password to the queue 
manager for checking. Previously a custom Authorization Service was required to check this (or a security 
exit if the applications were connecting as clients), now the Object Authority Manager (OAM) supplied with 
the queue manager and the z/OS Security component within the queue manager will deal with these user 
IDs and passwords. Whether z/OS or distributed, the component that deals with the user IDs and 
passwords will call out to a facility outside of MQ to do the check – more on that later.

� In WebSphere MQ V8 this will be available in all our interfaces listed, even where some of those were not 
made available in the WebSphere MQ V6 timeframe when the programming interface was originally 
provided.

� In prior releases the MQCSP had no architected limits on the user ID and password strings that were 
provided by the application. When using them with these MQ provided features there are limits which apply 
to the use of these features, but if you are only passing them to your own exits, those limits do not apply.

� The XAOpen string has also been updated to allow the provision of a user ID and password.
� Sometimes of course, it can be hard to get changes into applications, so the user ID and password can be 

provided using an exit instead of changing the code. Client side security exits or the pre-connect exit, can 
make changes to the MQCONN before it is sent to the queue manager, and the security exit in fact is 
designed to allow the setting of the MQCSP since V6 (so clients do not need to be updated to the new 
version in order to use this).



Capitalware's MQ Technical Conference v2.0.1.4

Procedural MQI changes
� MQCSP structure

� Connection Security Parameters
� User ID and password

� MQCNO structure
� Connection Options

� WebSphere MQ V6
� Passed to OAM (Dist only) 
� Also passed to Security Exit

� Both z/OS and Distributed
� MQXR_SEC_PARMS

� WebSphere MQ V8
� Acted upon by the queue manager (all platforms)

MQCNO cno = {MQCNO_DEFAULT};

cno.Version = MQCNO_VERSION_5;

cno.SecurityParmsPtr = &csp;

MQCONNX(QMName,
&cno ,
&hConn,
&CompCode,
&Reason);

MQCSP csp = {MQCSP_DEFAULT};

csp.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;
csp.CSPUserIdPtr = "hughson";                         
csp.CSPUserIdLength = 7;         /* Max: MQ_CLIENT_U SER_ID_LENGTH */
csp.CSPPasswordPtr = "passw0rd";
csp.CSPPasswordLength = 8;         /* Max: MQ_CSP_PA SSWORD_LENGTH   */

Capitalware's MQ Technical Conference v2.0.1.4

Object Oriented MQ classes changes

cf = getCF();

System.out.println("Creating the Connection with UI D and Password");
Connection conn = cf.createConnection("hughson", "pa ssw0rd");

JMS/XMS classes changes

MQEnvironment.properties = new Hashtable();
MQEnvironment.userID = "hughson";
MQEnvironment.password ="passw0rd";

System.out.println("Connecting to queue manager");
MQQueueManager qMgr = new MQQueueManager(QMName);



Capitalware's MQ Technical Conference v2.0.1.4

Using it from the MQ Explorer GUI

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Using it from the MQ Explorer GUI – Notes
� The WebSphere MQ Explorer GUI is an MQ Java™ application, so since there is a 

programming interface for MQ Java to supply a user ID and password, the Explorer GUI can 
use this.

� To configure the Explorer to use a user ID and password on a connection to a queue manager 
(whether local or client connection), select Connection Details->Properties… from the right-
mouse context menu on the queue manager. In the dialog that appears, choose UserId. This 
panel is the same for both local or client connections in WebSphere MQ V8, although the 
Properties dialog will have less selections for other things in the local case.

� Explorer has a password cache which will need to be enabled in order to use passwords. If 
you have never used it before there will be a link on this panel to take you through it.

� The other interesting item here is the “User identification compatibility mode” check box. This 
is for those of you who have been using Security exits with the Explorer in the past. The Java 
client previously did not use the MQCSP structure to supply its user ID and password in 
previous releases, and there are many exits written that have discovered where the user ID 
and password were provided instead. In order to retain compatibility for this, the Java client 
has two modes. It can run in compatibility mode and maintain what you had before, or it can 
run with the V8 mode and use the MQCSP. The check box shown is how you set that property 
in the Explorer GUI. For other Java applications, you need to set property to indicate you are 
happy to use the MQCSP method.

� At the queue manager, if no MQCSP is sent by a client, but the user ID and password are 
provided in this alternate method that was utilised by Java Clients, the V8 queue manager will 
accept this and drive the same password check as is used for the MQCSP provided 
passwords.



Capitalware's MQ Technical Conference v2.0.1.4

Using MQCSP from Java Client
� Java client (not local bindings) has two ways to send passw ord

� FAP Flow
� MQCSP structure

� FAP Flow
� Mechanism used by many customer security exits
� Retained as default
� Restricted to 8 characters user IDs and passwords
� Not protection by password protection algorithm
� Used by Connection Authentication if seen and no

MQCSP found

� MQCSP structure
� Used by Java Client when property set
� Non-default
� Allows longer user IDs and passwords
� Can be protection by password protection 

algorithm

MQ Classes for Java
set the property MQConstants.USE_MQCSP_AUTHENTICATION_PROPERTY to true in the properties 
hashtable passed to the com.ibm.mq.MQQueueManager constructor.

MQ Classes for JMS
set the property JMSConstants.USER_AUTHENTICATION_MQCSP to true on the appropriate 
connection factory prior to creating the connection

Globally
set the System Property "com.ibm.mq.cfg.jmqi.useMQCSPauthen tication" to a value indicating true, 
for example by adding "-Dcom.ibm.mq.cfg.jmqi.useMQCSPauthentication=Y" to the command line

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Using MQCSP from Java - Notes
� We saw on a previous page the example code you might use to provide the user ID 

and password from a Java classes application or a JMS application. This is actually 
nothing new. Java clients have been able to send a user ID and password across 
the channel FAP before. This part of the FAP was very restrictive though, it only 
allowed or 8 character user IDs and 8 character passwords. And, of course, it was 
only for clients. The MQCSP interface was designed not to have such limitations.

� There are quite a number of customers pre-V8 who have security exits written to 
pull the user ID and password sent by Java clients in this way. Because of this, we 
could not change the default of the Java clients over to use the MQCSP or all these 
security exits would have to be changed. So by default, Java clients continue to 
send the user ID and password  as this restrictive FAP flow.

� On the queue manager end, if we receive a user ID and password in this FAP flow, 
and no MQCSP structure, we will use the user ID and password in the FAP flow for 
Connection Authentication, so you don’t have to make any changes in order to 
remove a security exit that is checking the user ID and password in this way.

� However, there are benefits to using the MQCSP structure, including password 
protection and the increased length of the fields, so when you are ready to change 
over to use MQCSP instead of the FAP flow in a Java client, you need to set the 
system property.



Capitalware's MQ Technical Conference v2.0.1.4

Exit: mqccred

Client side Security Exit

MQCONN

Application

Q
M

gr
Q

M
1

Network
Communications

AllQueueManagers:
User=abc
OPW=%^&aervrgtsr

QueueManager:
Name=QM1
User=user1
OPW=H&^dbgfh

AllQueueManagers:
User=abc
password=newpw

QueueManager:
Name=QMA
User=user1
password=passw0rd

Tool: runmqccred

mqccred.ini

mqccred.ini

File
permissions

Exit can be used by 
clients from V7.0.1 
and later (by copying 
from a V8 installation)

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Client side Security Exit – Notes
� To make changes to applications, especially the very prevalent client attached applications 

where we see the strongest use case for using user ID and password, is difficult for 
customers. To aid with this issue, WebSphere MQ V8 provides a client side security exit which 
can set the user ID and password instead of making changes in the application to do this.

� The exit runs at the CLNTCONN end of the channel and pulls the user ID and the password 
from a file. This file is controlled by means of OS file permissions. If the exit discovers that the 
file permissions are too open, it will cause a failure thus ensuring that this important part of 
protecting the passwords does not go unnoticed.

� The file is additionally obfuscated from casual browsers. The algorithm for this obfuscation is 
not published, and neither is the source of the exit.

� The exit will be built in such a way that it can be picked up from a V8 installation and copied to 
a V7.0.1 client installation (or later). Note that using a client installation of < V8 will mean you 
have the password flowed in the clear. Only V8 and later at both ends will provide the ability to 
protect the flowed password without the need to use SSL/TLS.

� Along with the exit, we also supply a tool which is used to obfuscate the file containing the 
passwords.

� See blog post:-
https://www.ibm.com/developerworks/community/blogs/messaging/entry/bitesize_blogging_m
q_v8_mqccred_exit



Capitalware's MQ Technical Conference v2.0.1.4

Protecting your password across a network
� Use SSL/TLS

� Perhaps with anonymous clients

� If no SSL/TLS
� If both ends are V8
� MQ Code will protect the password – so not 

sent in the clear

� If client is < V8
� No MQ password protection
� Consider SSL/TLS

MQCONN

Application

Q
M

gr
Q

M
1

Network
Communications

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Protecting your password across a network – Notes

� When an application connects to a WebSphere MQ V8 queue manager across the 
network, i.e. making a client connection, the password it sends for connection 
authentication purposes travels across the network from the client application to the 
queue manager for checking. This password should be protected as it does so, so 
that network sniffers cannot obtain your password.

� For best possible protection, you can of course use SSL/TLS. You might imagine 
using anonymous SSL/TLS, i.e. the client does not have a certificate, since you are 
using user ID and password as the means by which to verify the identity of the 
client application.

� If you do not use SSL/TLS, and your client is at V8.0 or later, the WebSphere MQ 
product code will protect your password so that it is not sent in the clear. A good 
reason to get your clients upgraded to V8!

� If your WebSphere MQ Client is at a version earlier than V8.0, it can still send user 
ID and passwords (since the MQCSP structure has been around since V6) but the 
password will not be protected, so you should consider using SSL/TLS.



Capitalware's MQ Technical Conference v2.0.1.4

C:\>set MQSAMP_USER_ID=hughson

C:\>amqsput Q1 TEST1
Sample AMQSPUT0 start
Enter password: passw0rd
target queue is Q1
Message Text

MQ Samples/Tools that can use it
� MQ Explorer (earlier page)

� runmqsc
� New -u parameter and password prompt

� ‘C’ samples
� amqscnxc

� New -u parameter and password prompt
� amqsput(c), amqsget(c) and amqsbcg(c)

� Positional parameters
� Use MQSAMP_USER_ID=<userid> to 

provide user ID and cause password 
prompt

� JMS samples
� JmsProducer and JmsConsumer

� New -u and -w parameters to supply user 
ID and password respectively

5724-H72 (C) Copyright IBM Corp. 1994, 2014.
Enter password:
********
Starting MQSC for queue manager TEST1.

Password
hidden

BEWARE! 
Password
not hidden

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Samples/Tools that can use it - Notes
� There are various tools and samples that are part of MQ where you can supply a 

user ID and password when they connect to MQ.
� We already saw the screenshots of MQ Explorer on an earlier page.
� The runmqsc tool, which in MQ V8 can run as a client or as a locally bound 

connection, has been updated to take a new parameter -u, which supplies your 
user ID, and then prompt you for a password. This password prompt will also hide 
your password as you type it so no-one can look over you shoulder!

� Various samples have also been updated, in varying ways, to allow you to provide a 
user ID and password when using them. We’ve tried to update the samples we 
thought were most likely to be used by our customers, without updating every single 
one. The samples don’t contain code to hide the password when it is being typed in. 
This was code that would detract from the purpose of the sample which is to show 
how to write MQ applications.

� See blog posts:-
https://www.ibm.com/developerworks/community/blogs/messaging/entry/bitesize_blogging_mq_v8_samples
_can_use_user_id_and_password

� https://www.ibm.com/developerworks/community/blogs/messaging/entry/bitesize_blogging_mq_v8_client_m
qsc



Capitalware's MQ Technical Conference v2.0.1.4

Error notification
� Application

� MQRC_NOT_AUTHORIZED (2035)

� Administrator
� Error message

� Monitoring Tool
� Not Authorized Event message

(Type 1 – Connect)
� MQRQ_CONN_NOT_AUTHORIZED (existing)

� Connection not authorized.
� MQRQ_CSP_NOT_AUTHORIZED (new)

� User ID and password not authorized.
� Additional field to existing connect event

� MQCACF_CSP_USER_IDENTIFIER 

MQCONNX
User3 + pwd3

Application (User4)

MQRC_NOT_AUTHORIZED (2035)

SYSTEM.ADMIN.QMGR.EVENT

ALTER QMGR AUTHOREV(ENABLED)

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Error notification – Notes
� When an application provides a user ID and password which fail the password 

check, the application is returned the standard MQ security error, 2035 –
MQRC_NOT_AUTHORIZED.

� The MQ administrator will see this reported in the error log and can therefore see 
that the application was rejected due to the user ID and password failing the check, 
rather than, for example, a lack of connection authority (+connect).

� A monitoring tool can also be notified of this failure if authority events are on -
ALTER QMGR AUTHOREV(ENABLED) – via an event message to the 
SYSTEM.ADMIN.QMGR.EVENT queue. This Not Authorized event is a Type 1 –
Connect – event and provides all the same fields as the existing Type 1 event, 
along with one, additional field, the MQCSP user ID provided. The password is not 
provided in the event message. This means that there are two user IDs in the event 
message, the one the application is running as and the one the application 
presented for user ID and password checking.



Capitalware's MQ Technical Conference v2.0.1.4

Error Messages
� Incorrect password

� Distributed - AMQ5534: User ID 'hughson' authentication failed

� Followed by AMQ5542 (giving hint for why)
� z/OS MSTR - RACF ICH408I message

� Or equivalent for other External Security Managers

� Issue DISPLAY SECURITY for current CONNAUTH settings

� Missing password
� Distributed - AMQ5540: Application 'D:\nttools\q.exe' did not sup ply a 

user ID and password
� z/OS MSTR - CSQH045E cpf csect app-identifier did not provide a 

password

� app-identifier has different contents for locally bound app and client app.

� Missing password due to CHLAUTH CHCKCLNT upgrade
� Distributed - AMQ9791: The client application did not supply a us er ID and 

password.
� z/OS CHIN - CSQX791I cpf csect Client application app-name from address 

ip-address did not supply a user ID and password, Detail: conndetails

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Error Messages - Notes
� This feature introduces some new error messages that it is helpful to be aware of to 

allow you to work out why your application is receiving an 
MQRC_NOT_AUTHORIZED (2035) reason code.

� See also blog post:-
https://www.ibm.com/developerworks/community/blogs/messaging/entry/bitesize_bl
ogging_mq_v8_connection_authentication_on_z_os



Capitalware's MQ Technical Conference v2.0.1.4

User Repositories

QMgr

O/S User
Repository
(z/OS + Dist)

Netw
or

k

Com
mun

ica
tio

ns LDAP Server (Dist only)

DEFINE AUTHINFO(USE.OS) AUTHTYPE(IDPWOS) 

DEFINE AUTHINFO(USE.LDAP) AUTHTYPE(IDPWLDAP) 
CONNAME(‘ldap1(389),ldap2(389)’) 
LDAPUSER(‘CN=QMGR1’) 
LDAPPWD(‘passw0rd’) SECCOMM(YES)

MQCONNX
User1 + pwd1

Application (User2)

On z/OS passphrases 
can be used 

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

User Repositories – Notes
� So far we have spoken about user ID and password authentication without mentioning what is 

actually doing the authentication. We’ve also shown that there is a new type of authentication 
information object without showing you the object type. Here we introduce two new object 
types of authentication information objects.

� The first type is used to indicate that the queue manager is going to use the local O/S to 
authentication the user ID and password. This type is IDPWOS. This includes the use of 
password phrases on z/OS

� The second type is used to indicate that the queue manager is going to use an LDAP server 
to authenticate the user ID and password. This type is IDPWLDAP and is not applicable on 
z/OS.

� Only one type can be chosen for the queue manager to use by naming the appropriate 
authentication information object in the queue manager’s CONNAUTH attribute.

� We have already covered everything there is to say about the configuration of the O/S as the 
user repository as the common attributes are all there is for the O/S. There is more to say 
about the LDAP server as an option though.

� Some of the LDAP server configuration attributes are probably fairly obvious. The CONNAME 
is how the queue manager knows where the LDAP server is, and SECCOMM controls 
whether connectivity to the LDAP server will be done using SSL/TLS or not. The LDAPUSER 
and LDAPPWD attributes are how the queue manager binds to the LDAP server so that it can 
look-up information about user records. It is likely this may be a public area of an LDAP 
server, so these attributes may not be needed.

� It is worth highlighting that the CONNAME field can be used to provide additional addresses to 
connect to for the LDAP server in a comma-separated list. This can aid with redundancy if the 
LDAP server does not provide such itself.



Capitalware's MQ Technical Conference v2.0.1.4

Secure connection to an LDAP Server
QM's Digital 
Certificate

CA Sig

SSLKEYR

LDAP Server

ALTER QMGR CONNAUTH(USE.LDAP)
SSLFIPS(NO) SUITEB(NONE) 
CERTLABL(‘ibmwebspheremqqm1’) 
SSLKEYR('var/mqm/qmgrs/QM1/ssl/key') 

DEFINE AUTHINFO(USE.LDAP)
AUTHTYPE(IDPWLDAP)
SECCOMM(YES) 
CONNAME(‘ldapserver(389)’)

Netw
or

k

Com
mun

ica
tio

ns

DISPLAY QMSTATUS 
LDAPCONN

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Secure connection to an LDAP Server – Notes
� Unlike on channels, there is no SSLCIPH parameter to turn on the use of SSL/TLS 

for the communication with the LDAP server. In this case MQ is acting as a client to 
the LDAP server so much of the configuration will be done at the LDAP server. 
Some existing parameters in MQ will be used to configure how that connection will 
work as shown on this slide.

� The overall switch to choose SSL/TLS communication or not, we already saw on 
the previous page – SECCOMM.

� In addition to this attribute, we will also pay attention to the queue manager 
attributes SSLFIPS and SUITEB to restrict the set of cipher specs that will be 
chosen. The certificate that will be used to identify the queue manager to the LDAP 
server will be the queue manager certificate, either ‘ibmwebspheremq<qmgr-
name>’ or the newly added CERTLABL attribute which we’ll talked about in an 
earlier section of this presentation.

� Certificate revocation will be checked by using the OCSP servers that are named in 
the AuthorityInfoAccess (AIA) certificate extensions. This can be turned off by using 
the qm.ini SSL stanza attribute OCSPCheckExtensions.

� Connection to an LDAP Server is made as a network connection (which is why you 
may wish to consider using a secure connection). The status of this connection 
from the queue manager to the LDAP server is shown in DISPLAY QMSTATUS.



Capitalware's MQ Technical Conference v2.0.1.4

Adds ou=users,o=ibm,c=ukAdds cn=useradm

USRFIELD

Adds ou=users,o=ibm,c=ukcn=useradm

BASEDNU

objectClass=organizationUnit

objectClass=inetOrgPerson

objectClass=organization

objectClass=country

LDAP User Repository

LDAP Server

c=UK

DEFINE AUTHINFO(USE.LDAP) 
AUTHTYPE(IDPWLDAP) 
CONNAME(‘ldapserver(389)’)

o=ibm

cn=useradm cn=jbloggs

MQCONNX
User + pwd

Application cn=useradm,ou=users,o=ibm,c=uk

Application provides

BASEDNU(‘ou=users,o=ibm,c=uk’)
USRFIELD(‘cn’) 

ou=users

CLASSUSR(‘inetOrgPerson’)

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

LDAP User Repository – Notes
� When using an LDAP user repository there is some more configuration to be done on the 

queue manager other than just to tell the queue manager where the LDAP repository resides.
� User IDs records defined in an LDAP server have a hierarchical structure in order to uniquely 

identify them. So an application could connect to the queue manager and present its user ID 
as being the fully qualified hierarchical user ID. This however is a lot to provide and it would 
be simpler if we could configure the queue manager to say, assume all user IDs that are 
presented are found in this area of the LDAP server and add that qualification onto anything 
you see. This is what the BASEDNU attribute is for. It identifies the area in the LDAP 
hierarchy that all the user IDs are to be found. Or to look at it another way, the queue 
manager will add the BASEDNU value to the user ID presented by an application to fully 
qualify it before looking it up in the LDAP server.

� Additionally, your application may only want to present the user ID without providing the LDAP 
attribute name, e.g. CN=. This is what the USRFIELD is for. Any user ID presented to a queue 
manager without an equals sign (=) will have the attribute and the equals sign pre-pended to 
it, and the BASEDNU value post-pended to it before looking it up in the LDAP server. This 
may be a useful migratory aid when moving from O/S user IDs to LDAP user IDs as the 
application could very well be presenting the same string in both cases, thus avoiding any 
change to the application.



Capitalware's MQ Technical Conference v2.0.1.4

Relationship to Authorization – LDAP

QMgr

Authority
Checks

Q1: mqmadm +put

Authority Records
Q1

MQCONNX
cn=useradm

MQOPEN

Application

Network

Communications

LDAP Server

DEFINE AUTHINFO(USE.LDAP) 
AUTHTYPE(IDPWLDAP) 
CONNAME(‘ldap(389)’) 
ADOPTCTX(YES)
SHORTUSR(‘sn’) 

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Relationship to Authorization – LDAP - Notes
� We spoke earlier about the ability to adopt the authenticated user ID as the context 

for this connection. So how does this work if you are using LDAP as the user 
repository but your authorization is being done using O/S user IDs?

� We need to get a user to represent the LDAP user that has been presented, as an 
O/S user ID. We find this from the LDAP user record. This can be any field that is 
defined in the user record, perhaps something like the short name field (sn=) that is 
a mandatory part of the definition of the inetOrgPerson class, or perhaps something 
defined more specifically for the purpose such as a user ID (uid=) field.

� The queue manager will use that information to determine what O/S user ID will be 
used as the context for this connection. You configure it using SHORTUSR to say 
what the field to locate in the user record is.



Capitalware's MQ Technical Conference v2.0.1.4

AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) 
AUTHTYPE(IDPWOS)
CHCKLOCL(OPTIONAL) 
CHCKCLNT(REQDADM)
FAILDLAY(1)
DESCR( )
ALTDATE(2013-12-25)
ALTTIME(12.00.00)

Migration / Defaults
� Defaults

� Migrated queue manager
� CONNAUTH(‘ ’)

� New queue manager
� CONNAUTH(         )

QMgr

Q1

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Migration / Defaults – Notes
� By default, a migrated queue manager will find that CONNAUTH is blank – and 

therefore connection authentication is switched off.
� A brand new queue manager created with the WebSphere MQ V8 binaries will find 

that the CONNAUTH field points to the SYSTEM.DEFAULT.AUTHINFO.IDPWOS 
authentication information object.



Capitalware's MQ Technical Conference v2.0.1.4

Summary - Connection Authentication
� Application provides User ID and password in MQCSP

� Or uses mqccred exit supplied

� Queue Manager checks password against OS or LDAP
� ALTER QMGR CONNAUTH(‘CHECK.PWD’)
� DEFINE AUTHINFO(‘CHECK.PWD’)

AUTHTYPE(IDPWOS|IDPWLDAP)
CHCKLOCL(NONE|OPTIONAL|REQUIRED|REQDADM)
CHCKCLNT(NONE|OPTIONAL|REQUIRED|REQDADM)
ADOPTCTX(YES)

+ various LDAP attributes
� REFRESH SECURITY TYPE(CONNAUTH)

� Password protection is provided when SSL/TLS not in  use
� Both ends of client channel are V8 or above


