
25/09/2013

1

Capitalware's MQ Technical Conference v2.0.1.3

MQ Internals Deep Dive &
Performance (Distributed)

Mark Taylor

marke_taylor@uk.ibm.com

IBM Hursley

© 2013 IBM Corporation

Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change

or withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a

commitment, promise, or legal obligation to deliver any material, code or

functionality. Information about potential future products may not be incorporated

into any contract. The development, release, and timing of any future features or

functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or performance

that any user will experience will vary depending upon many factors, including

considerations such as the amount of multiprogramming in the user’s job stream,

the I/O configuration, the storage configuration, and the workload processed.

Therefore, no assurance can be given that an individual user will achieve results

similar to those stated here.

25/09/2013

2

© 2013 IBM Corporation

Agenda

• What is distributed WebSphere MQ?

• Structure of the Queue Manager

• Function Walkthroughs

• Channels

• Logging and Recovery

• Multiple Installation Support

• Other ways to improve application performance

© 2013 IBM Corporation

Agenda

• What is distributed WebSphere MQ?

• Structure of the Queue Manager

• Function Walkthroughs

• Channels

• Logging and Recovery

• Multiple Installation Support

• Other ways to improve application performance

25/09/2013

3

© 2013 IBM Corporation

WMQ for z/OS

Z/OS Code Base Distributed Code Base

WMQ for

Windows

30%

WebSphere MQ for Distributed platforms

AIX

1%

HP-UX

1%

Solaris

1%

Channels and Clustering

(common, but ported)

Common Services

WMQ for Unix

10%

Linux

1%

 What is Distributed WMQ?

iSeries

7%

V7 Pub/Sub

(common)

© 2013 IBM Corporation

NOTES: What is Distributed WMQ?

• There are two core WebSphere MQ code bases developed in Hursley.

• The Distributed version is the code base for range of workstation and midrange systems. Its design point is a

full function, high performance queue manager with a focus on highly portable code. These are the Distributed

queue managers.

‒ There is a very high percentage of common code between versions on different operating systems.

‒ The code is mainly written in C with special attention to portability. Even the environment to build the executables is

portable.

‒ Code differences relate mainly to differences in operating system facilities and packaging. On some platforms there

is specific code to integrate the user interface with the operating system (eg Windows and iSeries)

• The z/OS version of WMQ is aimed at being a full function, high performance queue manager with maximum

exploitation of MVS architecture. Some code, notably the MCAs and clustering, is shared between the

implementations.

• Percentages in the diagram represent the approximate proportion of code specific to each version.

• iSeries is classed as a UNIX platform from the Distributed queue managers point-of-view as it shares many

similarities with other UNIX platforms. The platform-specific code here is mostly in dealing with configuration

panels, and the use of native logging/journalling features.

• The source code of the Distributed version of WMQ is licensed to several partners who use it as the basis of

ports of WMQ to other operating systems; it is also used by other parts of IBM to further extend the operating

system support.

• From V7.0, there is now truly common code between z/OS and Distributed: previously the “common” code was

ported between environments

N

O

T

E

S

25/09/2013

4

© 2013 IBM Corporation

Performance Bottlenecks

• Business Systems are complex
‒ Often no single bottleneck limiting performance

‒ Performance can mean different things to different people

‒ Throughput

 Scalability

 Low resource usage

• Not only limited by physical resources
‒ Application design, such as parallelism can have major effect

• Performance Reports (from SupportPac site) show range of

scenarios

RAM CPU Network I/O

Bottlenecks

© 2013 IBM Corporation

Performance Bottlenecks

• Modern systems are complex and there are many factors which can influence the

performance of a system. The hardware resources available to the application as

well as the way that application is written all affect the behavior.

• Tuning these environments for maximum performance can be fairly tricky and

requires fairly good knowledge of both the application and the underlying system.

One of the key points to make is that the simple trial and error approach of

changing a value and then measuring may not yield good results. For example, a

user could just measure the throughput of messages on the previous foil. They

could then double the speed of the disk and re-measure. They would see practically

no increase of speed and could wrongly deduce that disk I/O is not a bottleneck.

• Of course throughput is not the only metric that people want to tune for. Sometimes

it is more important that a system is scalable or that it uses as little network

bandwidth as possible. Make sure you understand what your key goal is before

tuning a system. Often increasing one metric will have a detrimental affect on the

other.

N

O

T

E

S

25/09/2013

5

© 2013 IBM Corporation

Agenda

• What is distributed WebSphere MQ?

• Structure of the Queue Manager

• Function Walkthroughs

• Channels

• Logging and Recovery

• Multiple Installation Support

• Other ways to improve application performance

© 2013 IBM Corporation

Notes: The Structure of the Queue Manager

• This section describes the various components which make up a

system.

• It also describes the way in which the processing for an MQI call is

separated across operating system processes and among the

components within the processes.

N

O

T

E

S

25/09/2013

6

© 2013 IBM Corporation

Message Channel

Agent

Communications

Interface Command Server

MQI

Queue Manager

Kernel

Data Abstraction and Persistence

Object

Authority

Manager

Application Interface

Log Manager

Applications

SPI

Common Services

Queue Manager: Functional View

© 2013 IBM Corporation

Notes: Queue Manager: Functional View

• The queue manager has the following major components:

• Application Interface provides the environment and mechanism for execution of MQI calls.

• Queue Manager Kernel provides most of the function of the MQI. For example, triggering is implemented here

along with message location.

• Object Authority Manager provides access control for the queue manager and its resources. It allows

specification of which users and groups are permitted to perform which operations against which resources.

• Data Abstraction and Persistence provides storage and recovery of the data held by the queue manager.

• Log Manager maintains a sequential record of all persistent changes made to the queue manager. This record

is used for recovery after a machine crash and for remembering which operations were in which transaction.

• Message Channel Agents are special applications using the SPI for the majority of their operations. They are

concerned with reliable transmission of messages between queue managers.

• SPI is a lower-level API similar to MQI but only available to Queue Manager processes offering greater

performance and functionality.

• Command Server is a special application. It is concerned with processing messages containing commands to

manage the queue manager.

• Common Services provides a common set of operating system-like services such as storage management,

NLS, serialisation and process management. This isolates the Queue Manager from platform differences.

N

O

T

E

S

25/09/2013

7

© 2013 IBM Corporation

Also:

runmqchi

runmqlsr

amqzdmaa

amqrmppa

amqpcsea

Execution

Controller

(amqzxma0)

Log Manager

(amqhasmx)
(not iSeries)

Log

Formatter

(amqharmx)
(not iSeries)

Checkpoint

Processor

(amqzllp0)
(iSeries:

amqalmpx)

Repository

Manager

(amqrrmfa)

Object

Authority

Manager

(amqzfuma)
LQM

Agent

(amqzlaa0)

Queue Manager Process Tree

V5.3

© 2013 IBM Corporation

Notes:Queue Manager Process Tree – V5.3

• These are the processes you see when a queue manager is running. The example is taken from AIX although

Windows and other Unix platforms are similar. The iSeries process structure is slightly different, but still contains

many of the same blocks of code and processes.

• The Execution Controller is program amqzxma0. This is the root process of the queue manager and the parent

of all of the other processes. It can be thought of as the owner of all of the queue manager's shared resources.

It is concerned with managing and monitoring the other queue manager processes and the applications that

connect.

• The LQM agents are program amqzlaa0 or amqzlsa0. Agents perform the operations required to process MQI

calls on behalf of applications. Nearly all of the code beneath the MQI is actually executed by the agents.

‒ The separation of application programs from the queue manager's critical resources protects the queue

manager from rogue or malicious applications.

‒ The number of agent processes depends on the workload. By default, agents each handle about 60

concurrent connections.

• New in v5.3 were the channel process pooling processes, (amqrmppa) and the deferred message handler

(amqzdmaa)

• The log manager is program amqhasmx. All log reading and writing requests go through this process.

Communication with the agents is achieved through a set of shared memory buffers.

• If a queue manager is running with linear logging enabled, there will be a log formatter running, This program is

amqharmx. Its task is to pre-format log files in time for the log manager to use them. This process is not needed

when a qmgr is running a circular log as all the log files are created and initialised when the qmgr is created.

• The checkpoint processor is program amqzllp0. It is concerned with minimising the amount of recovery

processing when the queue manager is started.

N

O

T

E

S

25/09/2013

8

© 2013 IBM Corporation

Logs,

Expiry

Also:

runmqchi

runmqlsr

amqzdmaa

amqrmppa

amqpcsea

Execution

Controller

(amqzxma0)

Critical

Services

(amqzmuc0)

Restartable

Services

(amqzmur0)

External

Processes

(amqzmgr0)

Repository

Manager

(amqrrmfa)

Object

Authority

Manager

(amqzfuma)
LQM

Agent

(amqzlaa0)

Queue Manager Process Tree

V6

Stats,

Errors

© 2013 IBM Corporation

Notes: Queue Manager Process Tree – V6

• V6 brought new asynchronous activities that did not warrant extra processes

‒ Would have been too many

‒ Three processes now run various tasks or services as THREADS

‒ All queue manager platforms are multi-threaded – was not always the case

• amqzmgr0

‒ Controls the traditional external processes such as command server, listener

‒ Also controls processes defined as SERVICES

• amqzmuc0

‒ Hosts internal services which are fundamental to the health of the queue manager

‒ Failures in this process result in queue manager termination

‒ Logger, checkpoint, formatter,

‒ New function: Message Expiry scanner – approximately every 5 minutes

• amqzmur0

‒ Hosts internal services considered not fundamental to queue manager health

‒ This process can be restarted in the event of a failure

‒ Error logging task and the statistics task

N

O

T

E

S

25/09/2013

9

© 2013 IBM Corporation

Also:

runmqchi

runmqlsr

amqzdmaa

amqrmppa

amqpcsea

Execution

Controller

(amqzxma0)

Critical

Services

(amqzmuc0)

Restartable

Services

(amqzmur0)

External

Processes

(amqzmgr0)

Repository

Manager

(amqrrmfa)

Object

Authority

Manager

(amqzfuma)
LQM

Agent

(amqzlaa0)

Queue Manager Process Tree

V6 V7.x

PubSub

V6 Compat

(amqfqpub)

PubSub

Streams

(amqfcxba)

PubSub Utils

(amqzmuf0)

Dur/Subs

Mgr

Topic

Scavenger

Multicast

Brw/Mark

Cache,

Inter QMgr

© 2013 IBM Corporation

Notes: Queue Manager Process Tree – V7

• V7 has new processes to handle publish/subscribe

operations

• amqfcxba, amqfqpub
‒ Provides compatibility with V6 queued pub/sub processing for streams

• amqzmuf0
‒ Pub/Sub Utility Container
‒ Cache management
‒ Inter-queue manager pub/sub daemon

• Other tasks added to existing controllers
‒ Browse/Mark scanner (restartable)
‒ Durable Subscription manager (critical)
‒ Topic Scavenger (critical)
‒ Multicast comminfo monitor (critical)

• Look in error log to see them starting

N

O

T

E

S

25/09/2013

10

© 2013 IBM Corporation

Agent

Queue Manager

Shared Resources

Checkpoint

MQCONN

MQCONN

MQOPEN

MQDISC

MQPUT

MQGET

etc.

Agent

IPCC

Execution

Controller

IPCC

Log Manager

MQI Stub

Application

IPCC
MQI Stub

Application

IPCC
MQI Stub

Application

IPCC

Object

Authority

Manager

Queue Manager: Process Model

Shared, Isolated and

Trusted Bindings

© 2013 IBM Corporation

Notes: Queue Manager: Process Model

• This diagram shows the processes in terms of their interactions.

• The application communicates with the Execution Controller when it needs an agent to talk to.

The EC is responsible for managing the agent processes. It monitors the agents and their

associated applications.

• The Application Interface is split into two parts:

‒ The MQI Application Stub is bound with the application code. It packages MQ requests and

passes them to the agent process using the IPCC.

‒ The Inter-Process Communication Component (IPCC) provides a message-passing interface

between the MQI applications, the agents and the EC.

• The application communicates with its agent process via the IPCC. The agent process performs

the MQI calls on the application's behalf. The IPCC exchanges between the application and

agent are synchronous request-reply exchanges.

• The processes within the queue manager share information using shared memory. The other

queue manager tasks such as the log manager and the checkpoint process also share queue

manager information in this way.

• The IPCC is implemented with several different options: the normal mechanism uses shared

memory, which provides for reasonable isolation with reasonable performance. Isolated bindings

use Unix-domain sockets, giving greater isolation but slower operations. Applications using

shared bindings can inhibit restart of a queue manager if they are not terminated. Trusted

bindings give the best performance (particularly for non-persistent operations) but can lead to

internal corruption if the application runs rogue.

N

O

T

E

S

25/09/2013

11

© 2013 IBM Corporation

Agenda

• What is distributed WebSphere MQ?

• Structure of the Queue Manager

• Function Walkthroughs

• Channels

• Logging and Recovery

• Multiple Installation Support

• Other ways to improve application performance

© 2013 IBM Corporation

Notes: Function Walkthroughs

• This section shows how the various components interact to provide

the MQI functions.

N

O

T

E

S

25/09/2013

12

© 2013 IBM Corporation

MQI Stub

Application

IPCC
Execution

Controller

IPCC

IPCC

DAP

Kernel

Agent

IPCC

Application (MQI Stub)

Verify parameters and handles

Construct a Connect message

Call API crossing exit

Send a message to the EC

Application (MQI Stub)

Receive the reply

Construct an IPCC message

Send the message to the agent

Application (MQI Stub)

Receive reply and call API crossing exit

Return HCONN

Execution Controller
Choose an agent or start a new one

Construct a reply IPCC message

Return reply to application

 Agent
Check App's permission to connect

Allocate and assign agent resources

Send IPCC reply back to application

MQCONN

© 2013 IBM Corporation

Notes: MQCONN

• MQCONN is different to most calls in that the application communicates directly with the Execution Controller.

The Execution Controller owns and manages the agent processes. When an application tries to make a

connection, the EC decides whether to start a new agent, to start a thread in an existing agent or to reuse an

existing agent which has just been released by another application. It will also create an IPCC link for the

application and agent to use to communicate if a new agent/thread is to be created.

• When the application issues MQCONN (not a client connect) the application stub which is bound to the

application does basic parameter checking. This is limited to checks which can be performed without access to

protected queue manager resources. For example, the stub can check to see if the application is already

connected and the queue manager requested exists on the machine.

• The parameters to MQCONN are bundled up into a Connect message. This is then sent across to the EC using

the IPCC. The EC selects or starts a new agent and returns the details to the application stub.

• If a new thread is to be created in the agent (the EC tells the application if it is) the application stub sends a

Start Thread message to the agent using the IPCC. The agent receives the message and associates itself with

the application. A thread will be started if the agent is running on an operating system where multiple threads

can be used in the agent. The application stub then sends a connection message to this thread.

• Otherwise, an existing agent thread is to be used and the application stub sends a connection message directly

to the thread.

• The Kernel checks that the application is authorised to connect. It creates a connection handle which the

application will use on all future calls.

• When the IPCC reply message is received in the application stub, it is unpacked and the output parameters are

returned to the application.

• FastPath applications bypass most of the IPCC processing at the expense of integrity

N

O

T

E

S

25/09/2013

13

© 2013 IBM Corporation

Performance Implications: Connection Binding

• Fastpath binding removes inter-process communications
‒ Implies that the application is 'trusted'

‒ MQCONNX option MQCNO_FASTPATH_BINDING

‒ Application failure can corrupt queue manager

• Primary benefit is for non-persistent message processing
‒ Use for MCAs, Broker

 - 30% CPU saving

MQ

Appl
Agent

Memory

 Log
IPC

Standard

Binding

MQ

Appl
Agent

Memory

 Log

FASTPATH

Binding

© 2013 IBM Corporation

Performance Implications: Connection Binding

MQ

Appl
Agent

Memory

 Log
IPC

Standard

Binding

MQ

Appl
Agent

Memory

 Log

FASTPATH

Binding

MCA Agent
Memory

 Log
IPC

Client

Binding

MQ

Appl

N
e
tw

o
rk

25/09/2013

14

© 2013 IBM Corporation

Performance Implications: Connection Binding

• Two of the major overheads in the processing path for MQ are the Inter-Process Communication component and

the I/O subsystem.

• For non-persistent messages, the I/O subsystem is rarely used. Therefore there is substantial benefit to be

gained from by-passing the IPC component. This is what the Trusted Binding provides.

• Depending upon the efficiency of the IPC component for a particular platform, the use of a Trusted Binding will

provide anything up to an 3 times reduction in the pathlength for non-persistent message processing.

• There is a price to pay for this improvement in pathlength. The Standard Binding for applications provides

separation of user code and MQ code (via the IPC component). The actual Queue Manager code runs in a

separate process from the application, known as an agent process (AMQZLAA0). Using standard binding it is not

possible for a user application to corrupt queue manager internal control blocks or queue data. This will NOT be

the case when a Trusted Binding is used, and this implies that ONLY applications which are fully tested and are

known to be reliable should use the Trusted Binding.

• The Trusted Binding applies to the application process and will also apply to persistent message processing.

However, the performance improvements are not so great as the major bottleneck for persistent messages is the

I/O subsystem.

• Use for Channel programs

‒ MQ_CONNECT_TYPE=FASTPATH env variable

‒ qm.ini under the Channels: section

 MQIBindType=FASTPATH

‒ Do not issue Stop Channel mode(TERMINATE)

‒ Exit code

• Write exits so that Channels and Broker can run trusted

N

O

T

E

S

© 2013 IBM Corporation

 Application (MQI Stub)
Verify hConn

Call API crossing exit

Verify parameter addressability

Place parameters in an Open message

Send an IPCC message to the agent

MQI Stub

Application

IPCC

DAP

Kernel

Agent

IPCC

Agent
 Application interface

 Verify open parameters

 Kernel
Verify operation validity

Resolve target – including cluster lookup

Check permissions on the queue

 DAP
Load the queue ready for gets and puts if required

ƒThis is the part that can use system resources

 Kernel
Generate handle to object for application

Generate responses and event messages

 IPCC
Send reply back to application

Application (MQI Stub)
Receive reply

Call API crossing exit

Return HOBJ

MQOPEN of a queue

25/09/2013

15

© 2013 IBM Corporation

Notes: MQOPEN of a queue

• The MQI application stub first does basic parameter checking. This is limited to checks which can be performed

without access to protected queue manager resources.

• The parameters to MQOPEN are bundled up into an Open message. This is then sent across to the agent using

the IPCC.

• The agent thread dedicated to this connection in the meantime has been waiting for a message. Periodically, it

checks that the application is still alive so that cleanup can be performed if it ends without disconnecting.

• The application interface checks the syntax of the MQOPEN request.

• The kernel verifies the operation for validity. Many aspects will already have been verified, but some can only be

checked at this stage. The kernel resolves the name of the target queue. The queue name supplied by the caller

may be a local, remote or alias queue and might be a model queue being used to create a dynamic queue. The

target queue may be a normal local queue or a transmission queue if the messages are destined for another

queue manager. If it's a queue that is part of a cluster then some resolution of the target (to the cluster transmit

queue) will be done here; final resolution to a specific queue manager may be done depending on the MQOO

options.

• The kernel sorts this lot out and opens the appropriate underlying queue. Whilst doing this, the kernel also

checks that the requester of the operation is actually authorised to perform it. It calls the OAM to perform these

checks.

• The DAP performs the operations needed to make the physical (local) queue available. This is termed loading

the queue. It involves opening the file containing the underlying message data and allocating the shared

memory buffers and other shared resources necessary for the queue to be used. Of course, if the queue is

already loaded, this work can be avoided.

• Finally, the Kernel creates the 'handle' which the application will use to access the queue.

• When the IPCC reply message is received in the application stub, it is unpacked, the API crossing exit is called

again, and the output parameters are returned to the application.

N

O

T

E

S

© 2013 IBM Corporation

Performance Implications: Heavyweight MQI Calls

• MQCONN is a “heavy” operation
‒ Don’t let your application do lots of them

‒ Wrappers and OO interfaces can sometimes hide what’s really happening

‒ Lots of MQCONNs can drop throughput from 1000s Msgs/Sec to 10s

Msgs/Sec

• MQOPEN is also ‘heavy’ compared to MQPUT/MQGET
‒ Depends on the type of queue and whether first use

 Loading pre-existing queue; creating dynamic queue

‒ It’s where we do the security check

 Try to cache queue handles if more than one message

‒ If you’re only putting one message consider using MQPUT1

 Particularly client bindings

• Try to avoid exclusive access to the Queue
‒ Makes it harder to scale the solution

 For example adding more instances of application

‒ Implies that reliance on message order is not required

 Partition the data to allow parallel processing?

25/09/2013

16

© 2013 IBM Corporation

Performance Implications: Heavyweight MQI Calls

• MQCONN is a very heavyweight operation. Doing lots of these calls could cause throughput to

suffer. Make sure that you don’t connect and disconnect a lot in your application, rather,

connect once and then use this connection for all subsequent operations. Think carefully about

any encapsulation you might do in your OO applications, make sure that the encapsulation

does not cause you to do lots of MQCONNs and MQDISCs.

• MQPUT1

If just putting a single message to a queue, MQPUT1 is going to be cheaper than MQOPEN,

MQPUT and MQCLOSE. This is because it is only necessary to cross over from the application

address space into the queue manager address space once, rather than the three times

required for the separate calls. Under the covers inside the queue manager the MQPUT1 is

implemented as an MQOPEN followed by MQPUT and finally the MQCLOSE. The cost saving

for a single put to a queue is the switching from application to queue manager address space.

Of course, if multiple messages need to be put to the queue then the queue should be opened

first and them MQPUT used. It is a relatively expensive operation to open a queue.

• Exclusive use of queues

Opening queues for exclusive use can help with sequencing issues, but it is a good idea to

investigate whether other solutions are available. Exclusive use will make it harder to add extra

tasks to process more work if needed in the future. Possible solutions are partitioning the data

on the queue so that different tasks can work on different parts of the queue data (get by

CorrelID can be used for this). This will enable more tasks to process the queue while

maintaining ordering within the partitioned part of the data.

N

O

T

E

S

© 2013 IBM Corporation

01 00 00 01 01

01 01 11 11 11

11 11 11 00 00

00 00 01 01 01

00 00 00 00 00

11 11 11 11 11

10 10 10 10 10

10 10 10 10 10

01 00 00 01 01

01 01 11 11 11

11 11 11 00 00

00 00 01 01 01

00 00 00 00 00

11 11 11 11 11

10 10 10 10 10

10 10 10 10 10

Space Map

01 00 00 01 01

01 01 11 11 11

11 11 11 00 00

00 00 01 01 01

00 00 00 00 00

11 11 11 11 11

10 10 10 10 10

10 10 10 10 10

Non-

persistent

Message

Detail

Cache

Queue file
Log

Message Chain(s)

Space Hdl

File System

Buffer

Overflow

Persistent

Queue Buffer

NP Queue

Buffer

Overflow
Persistent

In the Depths of a Queue

25/09/2013

17

© 2013 IBM Corporation

Notes: In the Depths of a Queue

• A queue is loaded into memory in the following structures, taking up around 60k (down from 300k prior to v5.3). Session

specific data is stored separately for queue browse cursors etc.

• Message Chains: Each message on a queue has an entry in a message chain. All messages, persistent and non-

persistent, committed and uncommitted, appear in one of the message chains. There are actually 10 message chains -

one for each message priority. The message chain is a linked list of 32 byte "space handles" made up of a hash of the

message id and correl id, message expiry time, flags, the location of the message head in the queue. If the messages is

fragmented, the handles link to space handles for the other parts of the message.

‒ The width of the hash for msgid/correlid was doubled on 64-bit queue managers; those systems also build better indexes for

searching by correlid

• Message Details Cache: This is a table of selected message attributes for the 512 most recently used messages. This

optimises access for messages which don't stay on the queue very long. It contains details of the message ID, Correl ID

etc.

• Space Map: A map is kept to manage the space in the queue buffers and queue file. The queue is split up into blocks of

512 bytes which contain messages or parts of a message. 2 bits are used to represent each block, with different values to

indicate if a block is Free (10), Free and allocated (11), contains NP data (00), or contains persistent data (01).

• Non-Persistent and Persistent Queue Buffers, and the Queue File: Messages are stored in shared memory buffers by

preference. If the buffers overflow, they are written to the file system buffer but we never perform a synchronous disk write

for an NP message. The buffers default to 64k, and 128k for the NP and P buffers respectively, doubled on the 64-bit

queue managers.

• Log: Whenever a persistent message is put or got, at least one log record is written. If the message is put or got outside

syncpoint, the log record will be written synchronously. If it is done inside syncpoint, a synchronous write is not required

until commit or rollback.

‒ For a transaction containing only non-persistent message operations, we don't write any log records at all.

‒ There is an exception to the rule about writing log records for persistent messages - one scenario allows us to pass messages

directly between applications without any I/O provided the messages are not part of a transaction (outside syncpoint).

• Additional tables are maintained so that segmented and grouped messages can be recognised and retrieved when flags

such as MQGMO_COMPLETE_MSG are issued.

N

O

T

E

S

© 2013 IBM Corporation

Persistent

Queue

Buffer

NP

Queue

Buffer

Message Chain(s)

Space Hdl
1

1

2
Space Map

01 00 00 01 01

01 01 11 11 11

11 11 11 00 00

00 00 01 01 01

00 00 00 00 00

11 11 11 11 11

10 10 10 10 10

10 10 10 10 10

Views of the Queue

25/09/2013

18

© 2013 IBM Corporation

Notes: Views of the Queue

• Ultimately the message chains and the space map are referring to the same storage. The space handles are referring to

the storage which is in use and allows the queue manager to store and retrieve messages. The space map allows the

queue manager to keep track of storage which is not in use.

• The queue file is split into 512 byte blocks. If a message is larger than 512 bytes it will be fragmented across different 512

byte blocks. A chain of space handles is created in the message chains to indicate where all parts of the message are

held. These space handles may not be adjacent to each other in the queue buffer - the next available free block will be

allocated. On the slide message 1 takes up 2 blocks, indicating by the two space handles marked '1'.

• When an MQGET of a persistent message is performed the space handle of the message just got will be placed into the

log. There is no need to describe the data removed. We only keep track of which parts of storage became free. The queue

buffer must therefore remain in a consistent state with the logs otherwise if we came to undo the MQGET we might

overwrite data. Therefore before we can undo any operations we must ensure the log and the queue buffer are

synchronized.

• Queues are unloaded in two phases: the first phase occurs at the first checkpoint after the last open handle to a queue is

closed, the second phase then occurs if the queue remains unreferenced to the next checkpoint. Shrinking of the queue

file occurs during the first of these two phases of unload. Checkpoints are typically taken every 10,000 recoverable (i.e

persistent) operations. If all message operations are for non-persistent messages then checkpoints could be very

infrequent.

‒ V6+ is aggressive in releasing unused queue space. It compares the actual size of the queue file with the required size of the

queue file every time that queue is checkpointed and truncates the queue file if it is oversized by both 1% and 16KB (regardles of

how many open handles reference the queue or the current qdepth, or the number of puts and gets since the last checkpoint).

• A queue is checkpointed when a checkpoint occurs AND a recoverable (i.e.persistent) update to the queue has been

made since the last checkpoint. MQ will truncate the queue to a minimal size when a CLEAR QL command is issued.

N

O

T

E

S

© 2013 IBM Corporation

Tuning Queue Buffers

• Increasing buffers can improve performance
‒ More information can be kept in memory, without flushing to disk

‒ Costs more memory per modified queue

• But no documented external mechanism to do it
‒ Performance supportpacs indicate how to do it

‒ DefaultQBufferSize / DefaultPQBufferSize

‒ SupportPac MS0P (Cat2 – ie “as-is”) includes “QTune” program

c:\> java -jar qtune.jar -d c:\mqm\qmgrs\QMA\queues\SYSTEM!DEFAULT!LOCAL!QUEUE

File c:\mqm\qmgrs\QMA\queues\SYSTEM!DEFAULT!LOCAL!QUEUE\q

Stored npBuff = 64 kB

Stored pBuff = QMgr default

Stored maxQSize = 2,097,151 MB

25/09/2013

19

© 2013 IBM Corporation

Tuning Queue Buffers

• SupportPac MS0P contains a number of utilities. Many are

extensions to the MQ Explorer, but there is also the qtune program

to modify the queue buffer sizes.

• The queue manager must be stopped when changing these

buffers, but you can display current values without stopping it.

• Remember that the buffers take up memory while the queue is

opened, so do not over-size every queue on the queue manager.

N

O

T

E

S

© 2013 IBM Corporation

Performance Implications: Persistence

• Log bandwidth is going to restrict throughput
‒ Put the log files on the fastest disks you have, separate from queue file

‒ Persistent messages are the main things requiring recovery after an outage

‒ Can significantly affect restart times

• Why use persistence?
‒ False assumption that persistence is for "important" data and nonpersistent for

when you don't care

‒ The real reason for persistent messages is to reduce application complexity

‒ With persistent, apps do not need logic to detect and deal with lost messages

‒ If your app (or operational procedures) can detect and deal with lost

messages, then you do not need to use persistent messages

MQPUT
Queue File

Log

25/09/2013

20

© 2013 IBM Corporation

Performance Implications: Persistence

• If persistent messages are used then the maximum rate that messages can be put is typically

going to be limited by the logging bandwidth available. This is normally the over riding factor as

to the throughput available when using persistent messages.

• As persistent messages need to be made available when a queue manager is restarted, they

may need to be recovered if there has been a failure (could be queue manager or system etc).

The persistent workload that has been done is the main key as to how long it is going to take to

restart the queue manager after a failure. There are other factors involved which include the

frequency of checkpoints etc, but ultimately it all comes down to the fact that persistent

messages have been used. If there has been a failure then no recovery is required on non-

persistent messages, the pages that contained them are simply marked as not used.

• If your application (or operational procedures) can detect and deal with lost messages, then you

do not need to use persistent messages.

• Consider:
‒ A bank may have sophisticated cross checking in its applications and in its procedures to ensure no

transactions are lost or repeated.

‒ An airline might assume (reasonably) that a passenger who does not get a response to a reservation

request within a few seconds will check what happened and if necessary repeat or cancel the reservation.

• In both cases the messages are important but the justification for persistence may be weak.

N

O

T

E

S

© 2013 IBM Corporation

Kernel

Verify operation validity

(Resolve cluster queue destination)

DAP

Reserve space for the message data

If (persistent message)

Write log records for the update

(Wait for log records to reach the disk if outside syncpoint)

Write the message to the queue file

Else (non-persistent)

If (space available in queue buffer)

Copy the message data into the buffer

Else

Write the message to the queue file without logging

Maintain queue statistics such as queue depth

Kernel

Generate responses and events, wakeup getters/drive async consumers

Serialised

MQPUT Walkthrough

Also check for "if waiting getter"

Tip!
Use persistent messages with

syncpoint

25/09/2013

21

© 2013 IBM Corporation

Notes: MQPUT Walkthrough

• The mechanism for reaching the kernel layer for MQPUT is the same as MQOPEN.

• The Kernel verifies the operation for validity. Many aspects will already have been verified, but some can only be checked

at this stage. For example, it has to check that puts have not been inhibited for the queue.

• If the message is being put to a cluster queue, resolution of the target may be done here before the message is put to the

cluster transmission queue.

• The DAP allocates space for the new message using the space map. If there is space, the message will be allocated in

one of the queue buffers, otherwise it will be allocated in the queue file.

• The operation will normally result in at least one log record being written if the message is persistent. If the message is

non-persistent but spilled to the queue file, we still do not write a log record.

• If the space was allocated in one of the queue buffers, the message data is copied into the buffer. If the space was

allocated in the queue file, the data will be written to the queue file via the file system buffer. If a log record is needed to

record the update, it will be written before the message data is written to the queue file. If the message is put under

syncpoint, neither write will be synchronous. A synchronous write to the log will be required when the transaction commits

or rolls back.

• The DAP maintains queue statistics, such as the number of uncommitted messages and the depth of the queue. It also

keeps track of which queues are used as initiation queues to speed up checking of the rules for trigger message

generation.

• All of the updates which the DAP performs are done atomically. If there is a failure at any point, the partial operation will

either be completed or removed completely. There's a lot of code to ensure that even complete failures of the agent

process do not destroy message integrity - updates to control structures are done in a defined order, and marked as they

occur so that another agent process can complete or backout the changes if necessary.

• On return to the Kernel, the final responses for the application are generated as are any event or trigger messages

required.

N

O

T

E

S

© 2013 IBM Corporation

Put to a waiting getter

• MQPUT most efficient if there is getting application waiting
‒ Having multiple applications processing queue increases percentage

‒ May not appear ‘balanced’ – May keep one ‘hot’

• Only for out of syncpoint messages
‒ Both persistent and non-persistent

‒ If Persistent outside of syncpoint, think carefully about why using persistence

 Got message could be lost if crash before returning to the application!

• No queuing required
‒ Removes a lot of processing of placing the message onto the queue

• Significantly reduces CPU cost and improves throughput
‒ Lots of improvements on this area in newest releases (7.1, 7.5)

MQPUT MQGET

MQGET

MQGET

25/09/2013

22

© 2013 IBM Corporation

Put to a waiting getter

• "Put to a waiting getter" (aka I/O-avoidance) is a technique whereby a message

may not actually be put onto a queue if there is an application already waiting to get

the message. Certain conditions must be satisfied for this to occur, in particular the

putter and getter must be processing the message outside syncpoint control (and

on z/OS the message must also be non-persistent). If these conditions are met then

the message will be transferred from the putter’s buffer into the getter’s buffer

without actually touching the MQ queue. This removes a lot of processing involved

in putting the message on the queue and therefore leads to increased throughput

and lower CPU costs.

• When in “put to waiting getter” mode the Queue Manager will try to keep one thread

‘hot’.
‒ Distributed always tries to keep one thread ‘hot’

• You should not expect to see “even” workload distribution between applications

when they are all getting from the same queue

N

O

T

E

S

© 2013 IBM Corporation

Kernel

Verify operation validity

Check message expiry

Wait for message if not available

DAP

Locate a message meeting the requested criteria including

current browse cursor position

priority

message id, correlation id, segment or group conditions

Copy data into the message buffer

If (persistent)

Write log record

(Wait for log record to reach the disk if outside syncpoint)

Move the browse cursor if required

Maintain queue statistics such as queue depth

Kernel

Generate responses and events

Serialised

MQGET Walkthrough

Tip!
In request reply model, get by correlid

more efficient than get by msgid

25/09/2013

23

© 2013 IBM Corporation

Notes: MQGET Walkthrough

• The Kernel verifies the operation for validity.

• The DAP searches the message chains to locate a suitable message.

• If the Get Message Options specified a msgid and/or correlid, the space handles are used to

optimise scanning for a suitable message. Expired messages can often be discarded at this

stage. If a hashed identifier appears to match then the DAP will look through the Message

Detail Cache to see if the message details are available there to ensure that the message really

does meet the specified conditions. If the message details are not in the cache they will have to

be loaded from the queue buffers or the queue file.

• If the application specified a browse or tried to get the message under its browse cursor, the

scope of the message search is reduced.

• The operation will result in a log record being written if the message is persistent.

• As for MQPUT, all of the updates which the DAP performs are done atomically. If there is a

failure at any point, the partial operation will either be completed or removed completely.

• On return to the Kernel, the final responses for the application are generated as are any event

or report messages required.

N

O

T

E

S

© 2013 IBM Corporation

Kernel

Verify operation validity

DAP

Write log record to end transaction

Wait for this log record to reach the disk

Lock all queues touched in this transaction

For each queue

Make any changes to messages in the transaction visible

Unlock queue

Kernel

Generate responses and events

Wakeup Getters/Drive Async Consumers

MQCMIT Walkthrough

Deal with 2PC protocol if in an

XA transaction

25/09/2013

24

© 2013 IBM Corporation

Notes: MQCMIT Walkthrough

• The Kernel verifies the operation for validity.

• The DAP locates the transaction to commit.

• A log record is written to end the transaction and this is forced to disk (actually written to the disk

and not just cached). Once this has occurred we know that all previous log records will also

have been forced out to the disk which will include all log records from the puts and gets of this

transaction.

• Once the log records have been written to the disk all changes under this transaction are made

visible to the rest of the queue manager.

• On return to the Kernel, the final responses for the application are generated as are any event,

report or trigger messages required.

N

O

T

E

S

© 2013 IBM Corporation

Performance Implications: Syncpoint

• Do you need it?
‒ Yes, when a set of work needs to either all be performed, or all not performed

• Maximum Size of UOW can be limited
‒ QMGR MAXUMSGS parm

‒ Set to sensible value to avoid runaway applications

• Make sure you keep the size of your UOWs small
‒ Don’t forget to end the UOW

• Cheaper to process in syncpoint for persistent messages
‒ Up to a point, not huge UOWs

‒ Log not forced after every MQPUT/MQGET

• Useful even when only a single message inside syncpoint
‒ And running multiple parallel applications

25/09/2013

25

© 2013 IBM Corporation

Performance Implications: Syncpoint

• The size of a UOW (number of messages in it) can be controlled via the

MAXUMSGS queue manager parameter. This however has no impact on

the duration of the UOW, it simply controls the maximum number of

messages that a UOW can contain. It prevents runaway applications

• It can be considerably cheaper to process multiple persistent messages

inside syncpoint rather than processing them outside syncpoint. This is

because if persistent messages are being used outside of syncpoint, it is

necessary to force them to the log as soon as they are put, to ensure that

they are available if a failure occurs. If they are processed inside syncpoint

it is only necessary to force the log when the UOW is committed. This

means that we will spend less time waiting for the pages to be forced out

to disk. In effect the cost of forcing the UOW out to disk is shared between

all of the messages put and got, rather than each one having to bear the

cost. Syncpoint should not be considered as an ‘overhead’.

N

O

T

E

S

© 2013 IBM Corporation

Publish/Subscribe Implementation in V7

• MQOPEN, MQPUT, MQGET very similar to point-to-point
‒ Includes cluster resolution

‒ Need to find closest admin topic node

‒ Internal subscribers may forward publication to another queue manager

• Durable Subscriptions held on SYSTEM.DURABLE.SUBSCRIBER.QUEUE
‒ Multiple subscriptions consolidated into single message

‒ Why is there no non-durable subscriber queue?

‒ Retained publications also stored on a queue

• Handling application abend
‒ V6 cleanup for non-durable subs was “automatic” for JMS, manual otherwise

‒ Automatic for V7+

• Managed destinations
‒ Agent creates queue in MQSUB - trace shows internal MQOPEN (kqiOpenModel)

• Parallel match-space access via shared memory set
‒ Several applications can publish simultaneously on the same topic

‒ Lock held during subscribe/unsubscribe processing

Tip!
Use latest maintenance levels,

especially on 7.0.*

25/09/2013

26

© 2013 IBM Corporation

Notes: Pub/Sub Implementation in V7

• There are many new capabilities inside the queue manager to handle publish/subscribe. But

wherever possible, existing techniques have been reused. For example, subscription information

is stored in a similar way to cluster repository data, as messages on queues. The number of

messages does not correspond to the number of subscriptions as many records can be

consolidated into a single message. These messages are read at startup, and a memory-based

view is built. That memory view is used for the lifetime of the queue manager, and the on-disk

messages are only updated when new durable (persistent) subscriptions are made or

consolidation is needed.

• Because an application’s subscription is directly connected to its hConn, we now know when the

application dies and can automatically remove resources such as managed queues or non-

durable subscriptions. Previously, the queue manager did not really understand non-durable

subscriptions and these were emulated with mechanisms that sometimes required manual

cleanup.

• Match-space (topic tree + subscription list) is held in shared memory for all agents to use. This

permits parallel access for multiple applications publishing on the same topic. A lock is held

during the subscribe/unsubscribe processing, to ensure a consistent view of this match-space.

While the lock is held, publication to that topic will be delayed.

N

O

T

E

S

© 2013 IBM Corporation

Message Processing in V7

• Persistent pubs switch to non-persistent-ish for non-durable

subscriptions
‒ Does not change the reliability level

‒ Messages are not logged, but they keep the “persistent” flag

‒ Improves performance

• Properties stored as part of the message
‒ Logged for persistence, rcdmqimg etc

‒ Written to disk in either RFH2 or an “internal” format

‒ Converted to application-required format during MQGET

• Selectors on queues can cause all messages to be browsed
‒ Queue lock may be held during selection

25/09/2013

27

© 2013 IBM Corporation

Notes: Message Processing in V7

• A non-durable subscriber is permitted to miss messages if it abends, so there is no point in

doing a full hardening of those messages. But they do need to know if the message was

originally a persistent message, in case they want to forward it unchanged.

N

O

T

E

S

© 2013 IBM Corporation

Agenda

• What is distributed WebSphere MQ?

• Structure of the Queue Manager

• Function Walkthroughs

• Channels

• Logging and Recovery

• Multiple Installation Support

• Other ways to improve application performance

25/09/2013

28

© 2013 IBM Corporation

Notes: Channels

• How they work

N

O

T

E

S

© 2013 IBM Corporation

QM1 (Local) QM2 (Remote)

MCA MCA

Transmission

Queue
Application

Queues

Network

Message

Confirm Flow

Message

Channel

Indoubt

Assured Delivery

• Channel synchronisation uses ScratchPads
‒ The SYNCQ was retained to hold channel status across restarts

‒ A small area of data which can be part of 2-phase commit processing

‒ Channel sync also uses file AMQRSYNA.DAT as an index into the scratchpads

‒ Messages in an in-doubt batch cannot be reallocated by clustering algorithm

25/09/2013

29

© 2013 IBM Corporation

Notes: Assured Delivery

• Here we can see the two ends of the channel transferring a batch of messages. Note how the

MCA's write data to disk at the end of the batch. This is only done for recoverable batches. The

data written contains the transaction id of the transaction used at the sending end to retrieve all

the messages. Once the sender end has issued a 'confirm' flow to its partner it is 'indoubt' until it

receives a response. In other words, the sender channel is not sure whether the messages have

been delivered successfully or not. If there is a communications failure during this phase then

the channel will end indoubt. When it reconnects to it's partner it will notice from the data store

that it was indoubt with its partner and so will ask the other channel whether the last batch of

messages were delivered or not. Using the answer the partner sends, the channel can decide

whether to commit or rollback the messages on the transmission queue.

• This synchronisation data is viewable by issuing a DIS CHSTATUS(*) SAVED command. The

values displayed should be the same at both ends of the channel.

• Note that if the channel is restarted when it is indoubt it will automatically resolve the indoubt.

However, it can only do this if it is talking to the same partner. If the channel attributes are

changed or a different Queue Manager takes over the IP address or a different channel serving

the same transmission queue is started then the channel will end immediately with message

saying that it is still indoubt with a different Queue Manager. The user must start the channel

directing it at the correct Queue Manager or resolve the indoubt manually by issuing the

RESOLVE CHANNEL command. Note that in this case the user should use the output from DIS

CHS(*) SAVED to ensure that the correct action COMMIT or BACKOUT is chosen.

N

O

T

E

S

© 2013 IBM Corporation

• Send from XmitQ until Batchsize/limit or Empty & Batchint expired.

• Store 'indoubt' record and send 'End-of-Batch' to Remote MCA.

• Remote MCA updates Batch Sequence, MQCMIT, sends ack

• Local MCA updates Batch Sequence number and issues MQCMIT.

• Pipeline Length =2 provides additional thread that will start processing

next batch after 'End-of-Batch' sent to Remote MCA

MCA MCA

QM1 (Local) QM2 (Remote)

Message Flow

DLQ DLQ

Channel Protocol

25/09/2013

30

© 2013 IBM Corporation

• The channel operation conforms to a quite simple model:

 Do until (batchsize/batchlimit reached) or (no more messages and batchint expired)

 Local MCA gets a message from the transmission queue

 A header is put on the data and sent using APPC, TCP etc.

End

Harden the message ids/indoubt flag

Send "End of batch flag"

Remote end commits

Remote end sends "OK" flag back

Local end updoubt synchronisation record to non-indoubt state and commits

• If there is any failure in the communications link or the MCA processes, then the protocol allows for re-

synchronisation to take place and messages to be appropriately recovered.

• Probably the most misunderstood part of the message exchange protocol is Batchsize. Batchsize controls the

frequency of commit flows used by the sending MCA. This, in turn, controls how often the communications line

is turned around and - perhaps more importantly - how quickly messages at the receiving side are committed

on the target application queues. The value for Batchsize that is negotiated at channel start-up is the maximum

Batchsize only - if the transmission queue becomes empty then a batch of messages is automatically

committed. Each batch containing Persistent messages uses the Scratchpad. The larger the effective batch

size, the smaller is the resource cost per message on the channel. Batchint can increase the effective batch

size and can reduce cost per message in the server.

• Pipelinelength=2 enable overlap of putting messages onto TCP while waiting for acknowledgment of previous

batch. This enables overlap of sending messages while waiting for Batch synchronization at remote system.

N

O

T

E

S

Channel Protocol

© 2013 IBM Corporation

Performance Implications: One or Multiple Channels

• Use one channel if it can handle the throughput
‒ Monitor depth of XMIT queue

‒ One high-use channel is more efficient than two low-use channels

 The actual batch size will be larger

‒ Multiple channels can yield some performance benefit

 Depends on network and arrival rate

• Multiple channels for separate classes of work
‒ Large messages only delay large message

‒ Encryption cost on taken on worthwhile messages

‒ Small interactive messages do not get delayed

MCA MCA
Message Flow

MCA MCA
Message Flow

25/09/2013

31

© 2013 IBM Corporation

Performance Implications: One or Multiple Channels

• For the reasons previously outlined, it is most appropriate to have as high a channel

utilization as possible. This means that it is appropriate to have as few channels as

can handle the load between any two queue managers.

• However, where there are different classes of message being moved around the MQ

network, it may be appropriate to have multiple channels to handle the different

classes.

• Messages deemed to be 'more important' may be processed by a separate channel.

While this may not be the most efficient method of transfer, it may be the most

appropriate. Note that a similar effect may be achieved by making the transmission

queue a priority order queue and placing these message at the head of the

transmission queue.

• Very large messages may hold up smaller messages with a corresponding

deterioration in message throughput. In this instance, providing a priority

transmission queue will not solve the problem as a large message must be

completely transferred before a high priority message is handled. In this case, a

separate channel for large messages will enable other messages to be transferred

faster.

• If it is appropriate to route message traffic through different parts of the underlying

network, multiple channels will enable those different network routes to be utilized.

N

O

T

E

S

© 2013 IBM Corporation

Clients in V7

• Many changes to the client protocols in V7
‒ All can improve performance

• Multiplexing or Shared Conversations
‒ For multi-threaded applications

‒ Several connections use the same socket

• Asynchronous Put
‒ For sending applications

• Read-ahead
‒ For receiving applications

• New threads inside application for full-duplex comms
‒ Sharecnv(0) – May be fast but no full-duplex so miss good functionality

‒ Sharecnv(1) – One socket per connection, may be faster than Sharecnv(10)!

‒ Sharecvn(10) – Shared socket for multiple conversations

25/09/2013

32

© 2013 IBM Corporation

Notes: Clients in V7

• Lots of changes made to the client connection protocols to enhance performance and scalability

N

O

T

E

S

© 2013 IBM Corporation

Client

Asynchronous Put Response

MQCONN

MQOPEN

MQOPEN

MQPUT

MQPUT

MQPUT

MQPUT

MQCMIT

Server

25/09/2013

33

© 2013 IBM Corporation

Asynchronous Put Response

• Asynchronous Put (also known as 'Fire and Forget') is a recognition of the

fact that a large proportion of the cost of an MQPUT from a client is the line

turnaround of the network connection. When using Asynchronous Put the

application sends the message to the server but does not wait for a

response. Instead it returns immediately to the application. The application

is then free to issue further MQI calls as required. The largest speed

benefit will be seen where the application issues a number of MQPUT calls

and where the network is slow.

• Once the application has competed its put sequence it will issue MQCMIT

or MQDISC etc which will flush out any MQPUT calls which have not yet

completed.

• Because this mechanism is designed to remove the network delay it

currently only has a benefit on client applications.

N

O

T

E

S

© 2013 IBM Corporation

Read-ahead of messages

Client

MQCONN

MQOPEN

MQGET

MQGET

MQGET

Server

Request for

‘n’ messages

25/09/2013

34

© 2013 IBM Corporation

Read-ahead of messages

• Read Ahead (also known as 'Streaming') is a recognition of the fact that a large proportion of

the cost of an MQGET from a client is the line turnaround of the network connection. When

using Read Ahead the MQ client code makes a request for more than one message from the

server. The server will send as many non-persistent messages matching the criteria (such as

MsgId) as it can up to the limit set by the client. The largest speed benefit will be seen where

there are a number of similar non-persistent messages to be delivered and where the network

is slow.

• Read Ahead is useful for applications which want to get large numbers of non-persistent

messages, outside of syncpoint where they are not changing the selection criteria on a regular

basis. For example, getting responses from a command server or a query such as a list of

airline flights.

• If an application requests read ahead but the messages are not suitable, for example, they are

all persistent then only one message will be sent to the client at any one time. Read ahead is

effectively turned off until a sequence of non-persistent messages are on the queue again.

• The message buffer is purely an 'in memory' queue of messages. If the application ends or the

machine crashes these messages will be lost.

• Because this mechanism is designed to remove the network delay it currently only has a benefit

on client applications.

N

O

T

E

S

© 2013 IBM Corporation

Agenda

• What is distributed WebSphere MQ?

• Structure of the Queue Manager

• Function Walkthroughs

• Channels

• Logging and Recovery

• Multiple Installation Support

• Other ways to improve application performance

25/09/2013

35

© 2013 IBM Corporation

Notes: Logging and Recovery

• Logging provides a record of the state of the queue manager and the transactions in progress. It is

fundamental to the ability of the queue manager to survive after a power or other system failure. It also

underpins the transaction support.

N

O

T

E

S

© 2013 IBM Corporation

WebSphere MQ Objects

• Recoverable entities known by the LQM
‒ Queue, Process, Queue Manager, Channel etc definitions

‒ Scratch Pads

• Objects have security control information
‒ Attempts to access them are mediated by the OAM

• Information is stored in Object files
‒ May be part of other data in same file

‒ Queue File contains messages and attributes

• Topics are objects, but Subscriptions are not

• Object Catalog points at object files
‒ dspmqfls

25/09/2013

36

© 2013 IBM Corporation

Notes: WebSphere MQ Objects

• The term "WMQ Object" has a special meaning inside the queue manager. It refers to entities which

are recoverably updated. As well as queue (message) data, system configuration information is stored

in these objects. Before V6, channels were not considered Objects in this sense.

• There is one object catalog file which lists all the objects (QMQMOBJCAT) and each object then has

its own file containing its attributes. The QFiles contain the message data AND the queue definitions.

• "Scratchpad" objects are used by the channel programs for faster updates of synchronisation

information. These scratchpads are not exposed by any API or command, so they cannot be used by

user programs. These objects replace the SYSTEM.CHANNEL.SYNCQ in the majority of cases. The

SYNCQ is still used to hold the status of channels (disabled, retry) across system restarts.

• The channel programs still have a separate file (AMQRSYNA) containing what is now an index into the

scratchpad objects. This file is not an WMQ object, although it is recognised by the rcdmqimg

command. It is updated only when channels are created or removed; it does not take part in batch

commit processing.

N

O

T

E

S

© 2013 IBM Corporation

What's the point of logging?

• A log record is written for each persistent update
‒ The log record describes the update

• Optimisations to minimise serialisation points

• Write-Ahead Logging
‒ The log is always more up-to-date than the actual data

• Log is a sequential file
‒ Sequential I/O is much quicker than random

‒ Single point of writing rather than to individual object files

• Log and actual data are reconciled during strmqm
‒ Progress information displayed

• Point of consistency – Checkpoint
‒ Log control file: amqhlctl.lfh – in log directory

‒ Checkpoint amqalchk.fil – qmgr directory

‒ Backup queue managers with WMQ V6

Myth!
Triple write integrity does not mean

we write all data 3 times!

25/09/2013

37

© 2013 IBM Corporation

Notes: What's the point of logging?

• Each update to persistent data is written to disk at least once. The first copy is a log record. The second copy may be the

actual modified data on disk if the effect on the persistent data goes unchanged for a long period of time. This may sound

like a lot of overhead but using the log does have advantages:

‒ Log records are always written to the end of the log, whereas the updates to the data on disk are more or less random by

comparison. The disk head is much more likely to be in the right place when writing to the log, especially if the log has a dedicated

disk drive.

‒ Special care is taken when writing log records to cope with power failures. This is fairly simple with a sequential file.

‒ The log makes it easy to keep track of the operations which make up transactions.

• Writing the data twice does not mean that we wait for the disk twice. In fact, message operations under syncpoint do not

result in synchronous I/O until commit or rollback.

• Non-persistent messages, even those that are spilled to disk, do not cause log records to be written.

• The log record describes the update in enough detail for the update to be recreated.

• The log records are written using a protocol called Write-Ahead Logging.

‒ The log record describing an operation is guaranteed to arrive on disk before the data being updated.

‒ The log is never less up-to-date than the actual data.

‒ The contents of the log records can be used to perform the updates on the real data.

• Every now and again the log and data are brought into line. This point of consistency is called a checkpoint. At the end of

a checkpoint, the queue files can be brought as up to date as the log at the start of the checkpoint if the queue manager

was recovered.

‒ During normal running, checkpoints are taken either every 30 minutes provided there are at least 100 log records, but also driven

when 10000 log records have been written.

• The log and data are reconciled during strmqm. This is called restart recovery. With V6+ there are messages displayed as

the queue manager goes through the phases of reconciliation.

N

O

T

E

S

© 2013 IBM Corporation

Normal processing

New State

Old State DO

Log Record

New State

Old State UNDO

Log Record

Recovery processing

New State

Old State

REDO

Log Record

DO, REDO and UNDO

25/09/2013

38

© 2013 IBM Corporation

Notes: DO, REDO and UNDO

• WMQ was designed to use a programming style known as DO-REDO-UNDO.

• All operations on recoverable data are split into three operations.

• DO

‒ During normal processing, each operation on recoverable data is performed and an associated log record is

generated. The log record contains an encapsulated version of the operation.

• REDO

‒ During recovery operations, resource managers may need to reapply changes which were originally made.

The contents of the log record and the old copy of the resources affected by the operation can be used to

recreate the updated state of the resources from the last checkpoint.

• UNDO

‒ After the REDO phase there may be certain operations which need to be undone such as partial

transactions. The contents of the log record and the updated copy of the resources affected by the operation

can be used to recreate the state of the resources as it was before the operations were performed.

• The DO-REDO-UNDO protocol is commonly used for resource and transaction managers. It relies on the correct

information being logged. It also relies on the availability of programs which can perform the operations

independently of the original application.

• The important point is that during restart, the log must contain all the information necessary to allow the resource

to be recovered without the intervention of any code other than the resource manager. The applications do not

have to be restarted.

N

O

T

E

S

© 2013 IBM Corporation

Checkpoint

Record

Indoubt Phase

UNDO Phase

Records to be

processed

Records already

processed

Records written

during restart

Replay and Analysis Phase
Log

Phases of Restart Recovery

• "Backup" Queue Managers
‒ Only do REDO

$ strmqm QMC

WebSphere MQ queue manager 'QMC' starting.

9 log records accessed on queue manager 'QMC' during the log replay phase.

Log replay for queue manager 'QMC' complete.

Transaction manager state recovered for queue manager 'QMC'.

WebSphere MQ queue manager 'QMC' started.

25/09/2013

39

© 2013 IBM Corporation

Notes: Phases of Restart Recovery

• Each time you restart, three phases of recovery are performed to restore the queue manager to a consistent state:

• Replay and Analysis Phase

‒ All log records after the last checkpoint are REDONE. This is known as repeated history.

‒ The checkpoint is the last known point of consistency between the log and the object files.

‒ The transaction table is rebuilt during this phase. Any transactions mentioned in log records are added to a list as candidates for

rollback in the final phase of restart. The state of all of the transactions found is also maintained during this phase. When the log

records for the end of a transaction are found, the transaction can be removed from the list.

‒ If the queue manager stopped cleanly (no in-flight transactions), the only processing required is to replay the most recent

checkpoint. There will be no work to do in the next two phases.

• Indoubt Phase

‒ We have a list of transactions in-flight at the time that the queue manager ended. For each transaction, we scan backwards through

the log from the last record the transaction wrote following the links between records in the same transaction building up a picture

of what the transaction was actually doing at the time the queue manager stopped.

• Undo Phase

‒ Any transactions in the list which are not prepared are rolled back. This involves writing special undo log records called

Compensation Log Records (CLRs). A CLR contains an after image only which corresponds to the before image of the log record it

is undoing.

‒ Once the CLR has been written, the operation which it describes will be ignored by the indoubt phase if we get into a situation

where restart is interrupted and restarted at second time.

• At the end of restart, we may have some prepared transactions. The indoubt phase will have reconstructed the list of

operations making up the transaction so we can subsequently commit or rollback the transactions when called by the

transaction manager.

N

O

T

E

S

© 2013 IBM Corporation

Agenda

• What is distributed WebSphere MQ?

• Structure of the Queue Manager

• Function Walkthroughs

• Channels

• Logging and Recovery

• Multiple Installation Support

• Other ways to improve application performance

25/09/2013

40

© 2013 IBM Corporation

Multiple Version support (New in 7.1)

• MQ now supports multiple installations
‒ One can be 7.0.1.6 (or higher) and up to 127 7.1 (or higher)

• Queue managers ‘owned’ by only one installation
‒ Single MQ data directory + namespace across all installations

• Externally represented by installation name
‒ Internal resources qualified with the installation id

MQ v7.0.1.0
/opt/mqm

Installation1 Id 1

MQ v7.1.0.0
/opt/other

PreProd Id 2

MQ v7.1.0.1
/opt/other2

DevTest Id 3

MQ vNext.0.0.0
/other/directory

Jasons Id 4

MQ Data
/var/mqm

Includes Errors, Trace etc

© 2013 IBM Corporation

Notes: Multiple Versions

• Multiple versions enables installations to be isolated from each

other

• Single namespace for the qmgrs as they can be transferred

between installations

• Isolation of installations achieved by internal resources adding the

installation id (see dspmqinst) onto their names

• A shared data directory means there is some overlap between

installations. In the shared tree is the ccsid.tbl file, user exits

(global or per install), trace and errors directories and more.

‒ Only one ‘binary’ mqzsd is shared between installations (contains no

code!) in <mqdata>\shared

N

O

T

E

S

25/09/2013

41

© 2013 IBM Corporation

How do apps find the MQ libraries?

• Windows
‒ Always supported relocated installs

‒ PATH is searched to find a library (.NET in GAC)

• Unix
‒ Fixed installation path (previously)

 RPATH may be compiled into the application

 Symlinks from /usr/lib

‒ LD_LIBRARY_PATH overrides may be possible

• function resolution means to load libraries from other installs you must

not have dependencies
‒ Self contained library ‘mqe’ contains all functions required for application side

processing (common services, IPCC etc)

© 2013 IBM Corporation

Notes: Locating libraries

• On windows, the operating system will search paths to resolve library loads.

However, if a function is needed from a dll which it already has a similarly named dll

in memory, it will resolve to the in memory one

• On unix, the operating system will use the embedded RPATH and an environmental

override such as LD_LIBRARY_PATH or equivalent (except on sudo programs).

• Because MQ always had a fixed installation path, often the embedded rpath will

point to that path, or rely on our previously supplied symlinks in /usr/bin.

• Symlinks for non-primary installs are not created, as you need to know which install

to go to. Embedded rpaths may work - if the libmqm picked up is 7.1+ then you can

talk to 7.0.1.7 or higher. If you pick up a 7.0.1.7 libmqm you cannot talk to 7.1

• This resolution issue is the cause of the fastpath / 7.0.1 restrictions, plus the reason

the exits interface has been extended to pass in the addresses of the MQI

functions.

N

O

T

E

S

25/09/2013

42

© 2013 IBM Corporation

myapp

mqm mqe

v7.1 /opt/mqm

v7.1 /opt/relocated

amqzlaa0

mqm mqe

mqzsd

1 2
4

3

Installation switching

Connect to QM1

QM1 Agent thread
QM1’s installation

QM2’s installation

© 2013 IBM Corporation

Notes: Installation switching

• When the queue manager being connected to is part of the same installation, then

there is no problem connecting

• An application will only ever load a single mqm library, and that will in turn locate

and load the mqe library from the same installation it comes from (assuming its

7.1+). Once the mqe library is loaded, all functions call through to it, and because it

is connecting to the same installation as the code came from, then it can use its

internal routines to talk IPCC to the agent

N

O

T

E

S

25/09/2013

43

© 2013 IBM Corporation

myapp

mqm mqe

v7.1 /opt/mqm

v7.1 /opt/relocated amqzlaa0

mqm mqe

mqzsd

1 2

4

3

5

6

7

Installation switching

Connect to QM2

QM2 Agent thread

QM1’s installation

QM2’s installation

© 2013 IBM Corporation

Notes: Installation switching

• When the queue manager being connected to is not part of the same installation

that the mqm library comes from then a switch needs to occur

• An application will only ever load a single mqm library, and that will in turn locate

and load the mqe library from the same installation it comes from (assuming its

7.1+). Once the mqe library is loaded, because the application is connecting to a

different installation as where the code came from, it cannot use its internal routines

to talk via IPCC to the agent for that queue manager

• Instead MQ loads the mqe library from the installation its trying to talk to, and

redirects API calls through them

• All MQI are ‘switchable’, plus some of the internal SPI’s are also switchable

N

O

T

E

S

25/09/2013

44

© 2013 IBM Corporation

Agenda

• What is distributed WebSphere MQ?

• Structure of the Queue Manager

• Function Walkthroughs

• Channels

• Logging and Recovery

• Multiple Installation Support

• Other ways to improve application performance

© 2013 IBM Corporation

Multicast – publish to multiple receivers

• Single message is duplicated in the network
‒ Receivers register interest on specific IP addresses

‒ Sender send datagrams to the multicast address

• Network cards/ routers make copies of data and send to receivers who

have registered for an address

• Uses normal MQI with some restrictions
‒ No persistence nor transactionality

‒ No durable subscribers

‒ No message segmentation nor grouping

‒ Pub/Sub only

Multicast

Unicast

Multicast – One message cloned

Unicast – Multiple messages throughout

25/09/2013

45

© 2013 IBM Corporation

Multicast - What are the benefits

• Low latency
‒ Much higher volumes than standard non-persistent messaging

‒ Messages do not pass through qmgrs, and peer to peer communication

• High Scalability
‒ Additional subscribers cause no slow down

‒ Reduced network traffic

• ‘Fair delivery’ of data
‒ Each subscriber ‘sees’ the data at the same time

‒ Multicast offers near simultaneous delivery

• High availability
‒ Multicast uses the network so no pub/sub engine to fan-out data

‒ Reduces load on Queue managers servers

© 2013 IBM Corporation

MQTT (Telemetry, Extended Reach, Mobile)

• Provides support for the MQTT protocol
‒ Ideal for small or embedded devices

mobile devices, smart meters, set top boxes, remote telemetry units

‒ Typically used for infrequent, small

‒ Does not use the MQI

• Supports 3 Quality of Services
‒ 0 - At most once (fast but unreliable)

‒ 1 - At least once (duplicates possible)

‒ 2 - Exactly once (slower but assured)

• Ideal for large numbers of connections with low message rates
‒ Tested with up to 100,000 clients on Linux, 64,000 on Windows

25/09/2013

46

© 2013 IBM Corporation

Summary

• Common code for multi-platform delivery

• Process isolation for integrity

• Persistent information safely stored on disk

• High Performance through Concurrency

• Newer capabilities significantly improve specific scenarios

© 2013 IBM Corporation 92

More Information

• IBM Messaging web pages – http://ibm.co/dj15lW
• Join our Messaging Community – http://ibm.co/aHnrJb
• IBM MessageSight Announcement - ibm.co/11A6x3H

• MQ Advanced Announcement – http://ibm.co/UDTPAN
• MQ Advanced for z/OS Announcement – http://ibm.co/Rkxap1
• MQ Advanced for Developers Announcement – http://ibm.co/XCOSLf
• WebSphere MQ Technical Whitepaper – http://ibm.co/OYr9Ly
• WebSphere MQ Trial download – http://ibm.co/NSmKJe
• Friend us on Facebook – http://on.fb.me/SuFGRX
• Follow us on Twitter - @IBMMessaging

• Watch us on Youtube – http://bit.ly/cCt6dH
• WebSphere MQ Advanced Podcast – http://ibm.co/T2CRX5

IBM Messaging Resources

http://ibm.co/dj15lW
http://ibm.co/aHnrJb
http://ibm.co/11A6x3H
http://ibm.co/UDTPAN
http://ibm.co/Rkxap1
http://ibm.co/XCOSLf
http://ibm.co/OYr9Ly
http://ibm.co/NSmKJe
http://on.fb.me/SuFGRX
http://bit.ly/cCt6dH
http://ibm.co/T2CRX5

25/09/2013

47

© 2013 IBM Corporation

Questions?

© 2013 IBM Corporation

25/09/2013

48

© 2013 IBM Corporation

Legal Disclaimer

• © IBM Corporation 2013. All Rights Reserved.

• The information contained in this publication is provided for informational purposes only. While efforts were made to verify the completeness and accuracy of the information contained

in this publication, it is provided AS IS without warranty of any kind, express or implied. In addition, this information is based on IBM’s current product plans and strategy, which are

subject to change by IBM without notice. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this publication or any other materials. Nothing

contained in this publication is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of IBM software.

• References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or

capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to

future product or feature availability in any way. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by

you will result in any specific sales, revenue growth or other results.

• If the text contains performance statistics or references to benchmarks, insert the following language; otherwise delete:

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will

experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage

configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.

• If the text includes any customer examples, please confirm we have prior written approval from such customer and insert the following language; otherwise delete:

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs

and performance characteristics may vary by customer.

• Please review text for proper trademark attribution of IBM products. At first use, each product name must be the full name and include appropriate trademark symbols (e.g., IBM

Lotus® Sametime® Unyte™). Subsequent references can drop “IBM” but should include the proper branding (e.g., Lotus Sametime Gateway, or WebSphere Application Server).

Please refer to http://www.ibm.com/legal/copytrade.shtml for guidance on which trademarks require the ® or ™ symbol. Do not use abbreviations for IBM product names in your

presentation. All product names must be used as adjectives rather than nouns. Please list all of the trademarks that you use in your presentation as follows; delete any not included in

your presentation. IBM, the IBM logo, Lotus, Lotus Notes, Notes, Domino, Quickr, Sametime, WebSphere, UC2, PartnerWorld and Lotusphere are trademarks of International

Business Machines Corporation in the United States, other countries, or both. Unyte is a trademark of WebDialogs, Inc., in the United States, other countries, or both.

• If you reference Adobe® in the text, please mark the first use and include the following; otherwise delete:

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

• If you reference Java™ in the text, please mark the first use and include the following; otherwise delete:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

• If you reference Microsoft® and/or Windows® in the text, please mark the first use and include the following, as applicable; otherwise delete:

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

• If you reference Intel® and/or any of the following Intel products in the text, please mark the first use and include those that you use as follows; otherwise delete:

Intel, Intel Centrino, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and

other countries.

• If you reference UNIX® in the text, please mark the first use and include the following; otherwise delete:

UNIX is a registered trademark of The Open Group in the United States and other countries.

• If you reference Linux® in your presentation, please mark the first use and include the following; otherwise delete:

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company, product, or service names may be trademarks or service marks of

others.

• If the text/graphics include screenshots, no actual IBM employee names may be used (even your own), if your screenshots include fictitious company names (e.g., Renovations, Zeta

Bank, Acme) please update and insert the following; otherwise delete: All references to [insert fictitious company name] refer to a fictitious company and are used for illustration

purposes only.

http://www.ibm.com/legal/copytrade.shtml

