
Capitalware's MQ Technical Conference v2.0.1.3

WebSphere MQ V7
Enhanced Application

Programming
Morag Hughson - hughson@uk.ibm.com

IBM Hursley - UK

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

What’s New in WebSphere MQ API
• WebSphere MQ V7 extends the MQ API (Application Programming

Interface) in a number of ways. In this presentation we will cover the new API
changes, excluding Publish/Subscribe:-

� Asynchronous Consumption of messages
� Asynchronous Put Response
� Read-ahead of messages
� Connection changes
� Message Properties + Selectors
� Simplified Browse + Co-operative Browse

• The changes for Publish/Subscribe are covered in a different presentation.

• There are a number of fully working samples provided for your reference
throughout this presentation. These are very similar to the samples shipped
with WebSphere MQ V7 but have been cropped a little to squeeze them onto
2 pages in each case.

Capitalware's MQ Technical Conference v2.0.1.3

Client/ServerClient/Server

Asynchronous Consumption of Messages

� Simplifies programming

� Allocates message buffers

� Wait on multiple queues

� Easy to cancel

� Can register an Event handler

MQCONN

MQOPEN
MQCB

MQOPEN
MQCB

MQCTL

MQPUT
MQCMIT

Callback function

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Asynchronous Consumption of Messages - Notes

• Asynchronous consumer allows the application to register an interest in messages of a
certain type and identify a callback routine which should be invoked when a message
arrives. This has the following advantages to the traditional MQGET application.

• Simplifies programming
The application can continue to do whatever it was doing without needing to tie up a
thread sitting in an MQGET call.

• Allocates message buffers
The application does not need to 'guess' the size of the next message and provide a
buffer just large enough. The system will pass the application a message already in a
buffer.

• Wait on multiple queues
The application can register an interest in any number of queues. This is very much
simpler than using MQGET where one generally ended up polling round the queues.

• Easy to cancel
The application can use either MQCTL or MQCB to stop consuming from a queue at
any time. This is awkward to achieve when an application is using MQGET

• Can register an Event handler
The application is notified of events such as Queue Manager quiescing or
Communications failure.

Capitalware's MQ Technical Conference v2.0.1.3

Define your call-back functions
� MQOPEN a queue

� or MQSUB using MQSO_MANAGED

� MQCB connects returned hObj
to call-back function

� Operations (MQOP_*)

� CallbackType
� Message Consumer
� Event Handler

MQCBD CBDesc = {MQCBD_DEFAULT};

cbd.CallbackFunction = MessageConsumer;
cbd.CallbackType = MQCBT_MESSAGE_CONSUMER;
cbd.MaxMsgLength = MQCBD_FULL_MSG_LENGTH;
cbd.Options = MQCBDO_FAIL_IF_QUIESCING;

MQOPEN(hConn,
&ObjDesc,
OpenOpts,
&hObj ,
&CompCode,
&Reason);

MQCB (hConn,
MQOP_REGISTER,
&cbd,
hObj ,
&md,
&gmo,
&CompCode,
&Reason);

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Define your call-back functions - Notes
• The MQCB verb ties a function (described in the Call-Back Descriptor (MQCBD)) to an

object handle. This object handle is any object handle that you might have used for an
MQGET. That is, one that was returned from an MQOPEN call or an MQSUB call
(using MQSO_MANAGED for example).

• The MQCB verb has a number of Operations. We see an example of
MQOP_REGISTER on this foil which tells the queue manager that this function
(described in the MQCBD) should be called when messages arrive for the specified
object handle. You can do the inverse of the operation with MQOP_DEREGISTER to
remove a previously registered call-back function. Also we have MQOP_SUSPEND
and MQOP_RESUME which we will cover a little later.

• There are actually two types of call-back function you can define. A message
consumer which is tied to an object handle, and receives messages or error
notifications about the specific queue such as MQRC_GET_INHIBITED; and an event
handler which is tied to the connection handle and receives error notifications about
the connection such as MQRC_Q_MGR_QUIESCING.

• One of the benefits of using asynchronous consume is that the queue manager
manages the buffer your message is in. This means that your application doesn’t have
to worry about truncated messages and acquiring bigger buffers in the case of
MQRC_TRUNCATED_MSG_FAILED. The default is to use
MQCBD_FULL_MSG_LENGTH, but if you wish to restrict the size of messages
presented to your call-back function, you can put a length in the MaxMsgLength field
of the MQCBD.

Capitalware's MQ Technical Conference v2.0.1.3

MQGMO differences

MQGET will never return with
MQRC_NO_MSGS_AVAILABLE

MQGMO_WAIT with
MQGMO.WaitInterval =
MQWI_UNLIMITED

Not allowedAllowedMQGMO_SET_SIGNAL

The message consumer will never be called
with MQRC_NO_MSGS_AVAILABLE

MQGET will return immediately with
MQRC_NO_MSGS_AVAILABLE if there
are no messages

MQGMO_NO_WAIT

Only called with
MQRC_NO_MSGS_AVAILABLE if just
started or has had a message since last 2033

MQGMO_WAIT with
MQGMO.WaitInterval = 0

Delivers first message then automatically
switches to BROWSE_NEXT

MQRC_OPTIONS_ERROR
Combining
MQGMO_BROWSE_FIRST +
MQGMO_BROWSE_NEXT

Asynchronous ConsumeMQGET

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

MQGMO differences - Notes
• The MQCB call provides an MQGMO structure which you will be familiar with

from using MQGET. The MQGMO is used for Asynchronous Consume as
well as for MQGET. It is after all the way to describe how to consume your
message whether synchronously or asynchronously. Some of the
attributes/options in the MQGMO operate slightly differently when used for
Asynchronous Consume and this foil details those differences.

• MQGMO_WAIT with MQGMO.WaitInterval = 0 operates just like
MQGMO_NO_WAIT when one uses on an MQGET, but in the case of
asynchronous consumers we wish to avoid the consumer from polling in a
busy loop in this case, so it operates more like a backstop marker to show
when the end of a batch of messages has been reached.

• Note that MQGMO_NO_WAIT, and MQGMO_WAIT with a WaitInterval of
MQWI_UNLIMITED are quite different when passed to MQGET but with the
MQCB call their behaviour is the same. The consumer will only be passed
messages and events, it will never be passed the reason code indicating no
messages. Effectively MQGMO_NO_WAIT will be treated as an indefinite
wait. This is to prevent the consumer from endlessly being called with the no
messages reason code.

Capitalware's MQ Technical Conference v2.0.1.3

Control your message consumption
� MQCTL controls whether

message consumption is
currently operable

� Operations
� MQOP_START
� MQOP_START_WAIT
� MQOP_STOP
� MQOP_SUSPEND (MQCB too)
� MQOP_RESUME (MQCB too)

� Give up control of the hConn for call-backs to use

� Change current call-backs operating
� Either MQOP_SUSPEND the connection
� Or from within a currently called call-back

MQCTLO ctlo = {MQCTLO_DEFAULT};
ctlo.Options = MQCTLO_FAIL_IF_QUIESCIN
MQCTL(hConn,

MQOP_START,
&ctlo,
&CompCode,
&Reason);

...

MQCTL(hConn,
MQOP_STOP,
&ctlo,
&CompCode,
&Reason);

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Control your message consumption - Notes

• Once you have defined all your message consumers using MQCB calls –
you may have several – then use the MQCTL call to tell the queue manager
you are ready to start consuming messages. Once you have called MQCTL
for a specific hConn you give up control of that hConn and it is passed to the
call-backs to use. If you try to use it for any other MQ call you will receive
MQRC_HCONN_ASYNC_ACTIVE. The exception to this is another call to
MQCTL to either MQOP_STOP or MQOP_SUSPEND message
consumption.

• Use MQOP_STOP when your application is finished consuming messages.
Use MQOP_SUSPEND (and then subsequently MQOP_RESUME) when
you wish to briefly pause message consumption while you, for example,
MQOP_REGISTER another MQCB call or MQOP_DEREGISTER an existing
one. While the whole hConn is suspended none of the call-backs will be
delivered messages. You may wish to only suspend a particular object
handle, in which case you can use MQOP_SUSPEND on an MQCB call.

• Calls to change the call-backs currently operating can also be made inside
another call-back removing the need to suspend the connection in order to
make changes such as this.

Capitalware's MQ Technical Conference v2.0.1.3

The call-back function
� Fixed prototype

� Call-back context (MQCBC)
� CallType – why fn was called
� CompCode + Reason detail any error
� State – Consumer state

� Saves coding all possible
Reasons

A

struct tagMQCBC
{
MQCHAR4 StrucId;
MQLONG Version;
MQLONG CallType;
MQHOBJ Hobj;
MQPTR CallbackArea;
MQPTR ConnectionArea;
MQLONG CompCode;
MQLONG Reason;
MQLONG State;
MQLONG DataLength;
MQLONG BufferLength;
MQLONG Flags;

};

MQLONG MessageConsumer(MQHCONN hConn,
MQMD * pMsgDesc,
MQGMO * pGetMsgOpts,
MQBYTE * Buffer,
MQCBC * pContext)

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

The call-back function - Notes
• Your call-back function can have any name you want, but it must conform to the

prototype shown. When called with a message, you are passed the Message
Descriptor (MQMD), the message buffer and the Get-Message Options structure
(MQGMO) which contains a number of output fields about the message you have
been given. You will know you have been given a message because the CallType field
in the Call Back Context (MQCBC) will be set to either MQCBCT_MSG_REMOVED or
MQCBCT_MSG_NOT_REMOVED (which one depends on the get options you used,
i.e. browse or a few specific errors).

• Your message consumer can also be called with CallType set to
MQCBCT_EVENT_CALL (this is also the only way an Event handler can be called).
The message consumer will be given events that are pertinent to the queue it is
consuming from, for example, MQRC_GET_INHIBITED whereas the event handler
gets connection wide events. If there is an error to report, in the case of an
MQCBCT_EVENT_CALL or in some cases for MQCBCT_MSG_NOT_REMOVED, it
will be reported in the CompCode and Reason fields of the MQCBC. When a Reason
code is delivered to a call-back, the State field of the MQCBC details what has
happened to the consumer as a result of the specific Reason. It can be used to
simplify application programming by informing the application what has happened to
the consumer function rather than the application having to know for each reason code
what the behaviour will be. States such as MQCS_SUSPENDED_USER_ACTION
which detail that some user intervention will be needed before message consumption
can continue.

Capitalware's MQ Technical Conference v2.0.1.3

Administrative view of consumer state
� Consumer state can be

seen in DISPLAY CONN
� Object handle state

� Also on DISPLAY QSTATUS
� Connection handle state

� If a connection or call-back is suspended and so cannot currently
consume messages, its ASTATE value will reflect this fact.

Starting MQSC for queue manager TEST1.

DIS CONN(30A1C94720001901) TYPE(ALL)
AMQ8276: Display Connection details.

CONN(30A1C94720001901)
TYPE(CONN)
APPLTAG(AsyncConsumer.exe) APPLTYPE(USER)
ASTATE(STARTED) CONNOPTS(MQCNO_SHARED_BINDING)

ASTATE(ACTIVE)
OBJNAME(Q2) OBJTYPE(QUEUE)
OPENOPTS(MQOO_INPUT_SHARED,MQOO_FAIL_IF_QUIESCING)
HSTATE(ACTIVE) READA(NO)

ASTATE(ACTIVE)
OBJNAME(Q1) OBJTYPE(QUEUE)
OPENOPTS(MQOO_INPUT_SHARED,MQOO_FAIL_IF_QUIESCING)
HSTATE(ACTIVE) READA(NO)

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Administrative view of consumer state - Notes

• Message consumers are tied to object handles and their existence is
reflected in the various administration views that show you details about
object handles. These are DISPLAY CONN TYPE(HANDLE) and DISPLAY
QSTATUS TYPE(HANDLE). The field ASTATE will indicate whether a
consumer has even been registered and what state it is currently in. Similar
information is also available for the connection handle with an ASTATE field
on DISPLAY CONN TYPE(CONN) as well.

• Connection handle ASTATE
� SUSPENDED
� STARTED
� STARTWAIT
� STOPPED
� NONE - No MQCTL call has been issued against the connection handle.

• Object handle ASTATE
� ACTIVE
� INACTIVE – MQCB done, but no MQCTL in STARTED state at the moment.
� SUSPENDED
� SUSPTEMP
� NONE – No MQCB call has been issued against this object handle.

Capitalware's MQ Technical Conference v2.0.1.3

ClientClient

Asynchronous Put Response

MQCONN

MQOPEN

MQOPEN

MQPUT

MQPUT

MQPUT

MQPUT

MQCMIT

ServerServer

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Asynchronous Put Response - Notes
• Asynchronous Put (also known as 'Fire and Forget') is a recognition of the

fact that a large proportion of the cost of an MQPUT from a client is the line
turnaround of the network connection. When using Asynchronous Put the
application sends the message to the server but does not wait for a
response. Instead it returns immediately to the application. The application is
then free to issue further MQI calls as required. The largest speed benefit
will be seen where the application issues a number of MQPUT calls and
where the network is slow.

• Once the application has competed it's put sequence it will issue MQCMIT or
MQDISC etc which will flush out any MQPUT calls which have not yet
completed.

• Because this mechanism is designed to remove the network delay it
currently only has a benefit on client applications. However, it is
recommended that applications that could benefit from it, use it for local
bindings as well since in the future there is the possibility that the server
could perform some optimisations when this option is used.

Capitalware's MQ Technical Conference v2.0.1.3

Put Response Options
� MQPMO_ASYNC_RESPONSE

� MQPMO_SYNC_RESPONSE

� MQPMO_RESPONSE_AS_Q_DEF

� MQPMO_RESPONSE_AS_TOPIC_DEF

� DEFPRESP
� SYNC
� ASYNC

� Returned (output) Message Descriptor
(MQMD)

� ASYNC

� ApplIdentityData

� PutApplType

� PutApplName

� ApplOriginData

� MsgId

� CorrelId

� SYNC

� Full MQMD is completedFRUIT
Price/Fruit

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Put Response Options - Notes
• You can make use of asynchronous responses on MQPUT by means of an

application change or an administration change. Without any change your
application will be effectively using MQPMO_RESPONSE_AS_Q_DEF
which will be resolved to whatever value is defined on the queue definition.
You can choose to deliberately use asynchronous responses by using
MQPMO_ASYNC_RESPONSE, and you can choose to always have
synchronous responses by using MQPMO_SYNC_RESPONSE.

• The queue and topic objects have an attribute DEFPRESP which is where
the MQPMO_RESPONSE_AS_Q_DEF/TOPIC_DEF are resolved from. This
has values ASYNC and SYNC.

• Apart from not being informed of any failures to put the message on the
queue, the other change when using ASYNC is that only some fields in the
Message Descriptor (MQMD) are actually filled in when it is returned as an
output structure to the putting application. The remaining fields are undefined
when using ASYNC responses.

Capitalware's MQ Technical Conference v2.0.1.3

Last error retrieval
� Application will not find out about

failure to put to queue
� Ignore the situation
� Issue an MQCMIT
� Issue the new verb MQSTAT

A

struct tagMQSTS
{
MQCHAR4 StrucId;
MQLONG Version;
MQLONG CompCode;
MQLONG Reason;
MQLONG PutSuccessCount;
MQLONG PutWarningCount;
MQLONG PutFailureCount;
MQLONG ObjectType;
MQCHAR48 ObjectName;
MQCHAR48 ObjectQMgrName;
MQCHAR48 ResolvedObjectName;
MQCHAR48 ResolvedQMgrName;

};

MQSTS sts = {MQSTS_DEFAULT};
MQSTAT(hConn,

MQSTAT_TYPE_ASYNC_ERROR,
&sts,
&CompCode,
&Reason);

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Last error retrieval - Notes
• Because the client does not wait for a response from the MQPUT call it will

not be told at MQPUT time whether there was a problem putting the
message. For example, the queue could be full. There are three things the
application can do :

� Ignore the situation
In many cases of say a non-persistent message the application does not care too much
whether the message makes it or not. If no response it received then another request can be
issued within a few seconds or whatever.

� Issue an MQCMIT
If the messages put are persistent messages in syncpoint then if any of them fail they will
cause a subsequent MQCMIT call to also fail.

� Issue the new verb MQSTAT
This new verb allows the application at any time to flush all messages to the server and
respond with how many of the messages succeeded or failed. The application can issue this
verb as often as required

Capitalware's MQ Technical Conference v2.0.1.3

Read-ahead of messages

ClientClient

MQCONN

MQOPEN

MQGET

MQGET

MQGET

ServerServer Request for
‘n’ messages

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Read-ahead of messages - Notes
• Read Ahead (also known as 'Streaming') is a recognition of the fact that a large

proportion of the cost of an MQGET from a client is the line turnaround of the network
connection. When using Read Ahead the MQ client code makes a request for more
than one message from the server. The server will send as many non-persistent
messages matching the criteria (such as MsgId) as it can up to the limit set by the
client. The largest speed benefit will be seen where there are a number of similar non-
persistent messages to be delivered and where the network is slow.

• Read Ahead is useful for applications which want to get large numbers of non-
persistent messages, outside of syncpoint where they are not changing the selection
criteria on a regular basis. For example, getting responses from a command server or
a query such as a list of airline flights.

• If an application requests read ahead but the messages are not suitable, for example,
they are all persistent then only one message will be sent to the client at any one time.
Read ahead is effectively turned off until a sequence of non-persistent messages are
on the queue again.

• The message buffer is purely an 'in memory' queue of messages. If the application
ends or the machine crashes these messages will be lost.

• Because this mechanism is designed to remove the network delay it currently only has
a benefit on client applications. However, it is recommended that applications that
might benefit from it, use it for local bindings as well since in the future there is the
possibility that the server could perform some optimisations when this option is used.

Capitalware's MQ Technical Conference v2.0.1.3

Read-ahead Options
� MQOO_READ_AHEAD_AS_Q_DEF

� MQOO_NO_READ_AHEAD

� MQOO_READ_AHEAD

� MQSO_READ_AHEAD_AS_Q_DEF
� When using managed queues

� MQSO_NO_READ_AHEAD

� MQSO_READ_AHEAD

� DEFREADA
� NO
� YES
� DISABLED

MQOPEN

MQSUB
MQSO_MANAGED

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Read-ahead Options - Notes
• You can make use of read-ahead on MQGET by means of an application change or

an administration change. Without any change your application will be effectively using
MQOO_READ_AHEAD_AS_Q_DEF on MQOPEN which will be resolved to whatever
value is defined on the queue definition. You can choose to deliberately use read-
ahead by using MQOO_READ_AHEAD on your MQOPEN, and you can choose to
turn off read-ahead by using MQOO_NO_READ_AHEAD.

• If you are using a managed destination on MQSUB, by default your application will be
effectively using MQSO_READ_AHEAD_AS_Q_DEF and taking its value from the
model queue that is used to base managed destinations on. Non-durable
subscriptions using the default provided model,
SYSTEM.NDURABLE.MODEL.QUEUE, will find that read-ahead is turned on. You
can choose to deliberately use read-ahead by using MQSO_READ_AHEAD on your
MQSUB, and you can choose to turn off read-ahead by using
MQSO_NO_READ_AHEAD on your MQSUB.

• Queue objects have an attribute DEFREADA which is where the
MQOO/SO_READ_AHEAD_AS_Q_DEF are resolved from. This has values YES and
NO for this purpose and additionally a value DISABLED, which over-rides anything
specified by the application and turns off any request for read-ahead on this queue.

Capitalware's MQ Technical Conference v2.0.1.3

Application Suitability
� Suitable for

� Non-persistent, non-transactional
consumption of messages
intended for this client only
� Non-durable subscriber
� Response messages to a query
� Message dispatching/routing

� Not suitable for
� Persistent, transactional messages
� Applications that continually change

message selection criteria

� Use of some options implicitly turn off read-ahead
� Persistent messages – read-ahead turned off for that message
� Certain MQGMO options – read-ahead turned off for whole use of that object handle (see next

page)

� Changing message selection criteria can leave unconsumed messages in
the read-ahead buffer
� Highlighted by DISPLAY CONN TYPE(HANDLE) with READA(BACKLOG) if the number of these

gets so high as to affect the efficiency of read-ahead

AMQ8276: Display Connection details.
CONN(153FCC4720008402)
EXTCONN(414D5143544553543220202020202020)
TYPE(CONN)
APPLTAG(D:\ReadAhead.exe) APPLTYPE(USER)
ASTATE(NONE) CHANNEL(SYSTEM.DEF.SVRCONN)
CONNAME(127.0.0.1)
CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING)
USERID(hughson)

OBJNAME(Q1) OBJTYPE(QUEUE)
OPENOPTS(MQOO_INPUT_SHARED,MQOO_READ_AHEAD)
HSTATE(ACTIVE) READA(BACKLOG)

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Application Suitability - Notes
• Message read ahead is supported between MQ clients and MQ servers thus removing the need for

the MQ client to specifically request every message that is sent to it by the server. Certain types of
applications can benefit from providing the message criteria that they wish to consume and having
these messages sent to the client without the need for the client to repeatedly tell the server the
same message criteria.

• Read ahead works best when one is fairly certain that the messages really are intended for this
client, one is fairly certain they will be consumed by the client, and one knows ahead of time in
what manner they will be consumed. Ideal scenarios include a non-durable subscribe of non-
persistent messages using an asynchronous consumer; a simple request/reply application getting
multiple reply messages; or a message dispatching or routing application. By contrast, a point to
point get of a persistent message in a transaction is not suitable for read ahead. However it is the
low-cost, non-transactional case which customers expect to be quick and therefore read ahead is
ideal in these circumstances.

• Read-ahead only applies to non-persistent messages. Any persistent messages will not be affected
by read-ahead. When the next message to be delivered is a persistent transactional message, the
client will wait until all buffered messages have been consumed and then request the persistent
message directly. Thus the quality of service for persistent messages is unchanged.

• The use of certain MQGMO fields or options may turn-off the use of read-ahead even if it is
explicitly requested by the application. MQOO_READ_AHEAD is an advisory option. It will also not
be used if specified on a application that is connecting to queue manager that is pre-V7 or when
used on a bindings connected application. It does not cause an error in these cases. The next page
will detail the specific fields and options.

• Your application can change the selection of messages by MsgId and CorrelId when using read
ahead. Doing so may result in messages being delivered to the in-memory buffer that are not
subsequently consumed by the application since it never requests them later. This causes a
backlog of messages in the in-memory buffer and will cause read ahead not to function as
effectively as it might. This can be seen in DISPLAY CONN TYPE(HANDLE) with
READA(BACKLOG).

Capitalware's MQ Technical Conference v2.0.1.3

MQGMO options with Read-ahead

MsgHandle

MQGMO fields

MQGMO_SET_SIGNAL

MQGMO_SYNCPOINT

MQGMO_MARK_SKIP_BACKOUT

MQGMO_MSG_UNDER_CURSOR

MQGMO_LOCK

MQGMO_UNLOCK

MQGET Options that are not
permitted when read ahead is
enabled

MQGMO_SYNCPOINT_IF_PERSISTENT

MQGMO_NO_SYNCPOINT

MQGMO_ACCEPT_TRUNCATED_MSG

MQGMO_CONVERT

MQGMO_LOGICAL_ORDER

MQGMO_COMPLETE_MSG

MQGMO_ALL_MSGS_AVAILABLE

MQGMO_ALL_SEGMENTS_AVAILABLE

MQGMO_MARK_BROWSE_*

MQGMO_UNMARK_BROWSE_*

MQGMO_UNMARKED_BROWSE_MSG

MQGMO_PROPERTIES_*

MQGMO_NO_PROPERTIES

MQGMO_WAIT

MQGMO_NO_WAIT

MQGMO_FAIL_IF_QUIESCING

MQGMO_BROWSE_FIRST

MQGMO_BROWSE_NEXT

MQGMO_BROWSE_MESSAGE_UNDER_CURSOR

MQGET MQGMO options

Encoding

CodedCharSetID

Version

Permitted when read ahead is
enabled but cannot be altered
between MQGET calls

MsgId

CorrelId

Permitted when read-ahead is
enabled and can be altered
between MQGET calls

MQGET MQMD values

MQRC_OPTIO
NS_ERRORMQRC_OPTIO

NS_CHANGED

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

MQGMO options with Read-ahead - Notes
• As noted on the previous page, some values you can specify on MQGET will cause

read-ahead to be turned off. The last row of the table indicate which these are. If they
are specified on the first MQGET with read-ahead on, read-ahead will be turned off. If
they are specified for the first time on a subsequent MQGET then that MQGET call will
fail with MQRC_OPTIONS_ERROR.

• Some values cannot be changed if you are using read-ahead. These are indicated in
the middle row of this table and if changed in a subsequent MQGET then that MQGET
call will fail with MQRC_OPTIONS_CHANGED.

• The client applications needs to be aware that if the MsgId and CorrelId values are
altered between MQGET calls, messages with the previous values may have already
been sent to the client and will remain in the client read ahead buffer until consumed
(or automatically purged).

• Browse and destructive get cannot be combined with read-ahead. You can use either,
but not both. You can MQOPEN a queue for both browse and get, but the options you
use on the first MQGET call will determine which is being used with read-ahead and
any subsequent change will cause MQRC_OPTIONS_CHANGED. You cannot
therefore use MQGMO_MSG_UNDER_CURSOR which is using the combination of
both browse and get.

Capitalware's MQ Technical Conference v2.0.1.3

Closing gracefully
� Tell queue manager to

stop reading ahead
� MQCO_QUIESCE

� If MQCLOSE returns
MQRC_READ_AHEAD_MSGS
� Still messages in the buffer
� Object handle still valid
� No more messages will be read-

ahead and sent down to the client

� If MQGET returns
MQRC_HOBJ_QUIESCED_NO_MSGS
� Same as MQRC_NO_MSG_AVAILABLE only after MQCO_QUIESCE

� New close options
� MQCO_QUIESCE
� MQCO_IMMEDIATE

MQGET(hConn,
hObj,
:
&CompCode,
&RC);

if (RC == MQRC_NO_MSG_AVAILABLE ||
RC == MQRC_HOBJ_QUIESCED_NO_MSGS)

break;
MQCLOSE(hConn,

&hObj,
MQCO_QUIESCE,
&CompCode,
&RC);

if (RC != MQRC_READ_AHEAD_MSGS)
break;

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Closing gracefully - Notes
• In order to end an application gracefully when messages may be in the client-side

read-ahead buffer that have not yet been consumed by the application, use the new
close option MQCO_QUIESCE. This tells the queue manager to stop reading
messages ahead of the application, but will not close the object handle if there are still
messages in the client-side buffer. In this case the MQCLOSE will return with
MQRC_READ_AHEAD_MSGS and the application can continue to use the object
handle to get these remaining messages.

• When a subsequent MQGET call reaches the end of the messages in the buffer after
an MQCLOSE with MQCO_QUIESCE, it will return with
MQRC_HOBJ_QUIESCED_NO_MSGS which is the same as
MQRC_NO_MSG_AVAILABLE but is additionally indicating that there will never be
any more messages ever again because the sending of messages to the client has
been quiesced. At this point the application will be able to successfully MQCLOSE the
queue without throwing any unconsumed messages away.

• The default value for MQCLOSE is MQCO_IMMEDIATE which will throw away any
unconsumed messages.

• If you are using read-ahead with asynchronous consume, when you have issued the
MQCLOSE with MQCO_QUIESCE call, your call-back will be called with the flag
MQCBCF_READA_BUFFER_EMPTY when the client-side proxy queue is empty.

Capitalware's MQ Technical Conference v2.0.1.3

Connection Changes
� MQCNO_NO_CONV_SHARING

� MQCNO_ALL_CONVS_SHARE (default)

� MQCNO_CD_FOR_OUTPUT_ONLY
� Save MQCD on first MQCONNX call

� MQCNO_USE_CD_SELECTION
� Use saved MQCD on subsequent MQCONNX call

Queue Manager

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Connection Changes - Notes
• MQCNO_ALL_CONVS_SHARE is the default value if none are used explicitly and

indicates that the application isn’t limiting the number of connections on the socket. It
leaves control of sharing entirely to the configuration at the server-connection end of
the channel. If the application indicates that the socket can be shared but the
SharingConversations (SHARECNV) channel definition is set to 1, no sharing occurs
and no warning is given to the application. Similarly, if the application indicates that
sharing is permitted but the SharingConversations definition is set to zero, no warning
is given, and the application exhibits the same behavior as a V6.0 client with regard to
sharing conversations, read ahead, heartbeating and administrator stop-quiesce: the
application setting relating to sharing conversations is ignored.

• MQCNO_NO_CONV_SHARING indicates that this application does not want to share
its socket regardless of the setting at the server-connection end of the channel. This is
particularly useful in situations where conversations are very heavily loaded and
therefore where contention is a possibility on the server-connection end of the socket
on which the conversations are shared.

• When obtaining your connection details from a client channel definition table (CCDT),
you may wish to deliberately choose the same connection for your next call to
MQCONNX. If so, you can request the MQCD describing the choice used from the
CCDT be returned to you on the first MQCONNX by using
MQCNO_CD_FOR_OUTPUT_ONLY, and then request it be used on the second
MQCONNX by using MQCNO_USE_CD_SELECTION.

Capitalware's MQ Technical Conference v2.0.1.3

Message Properties

� Control information about a message
� MQMD fields – pre-defined
� Message Properties – any value/type required

� User data – the message body
� User-defined format – as today
� Message Properties – any value/type required

Message PropertiesMessage Descriptor (MQMD)

Control Information User Data

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Message Properties - Notes
• Message properties are a concept allowing meta-data or control information

to be carried with a message without the need to put it either in a field in the
MQMD or build it into the application user-data structure. This control
information may be nothing to do with the application, such as tracking
information – maybe inserted by an API exit or intermediate serving
application – which the end application can ignore, or may be pertinent
information that the application uses, perhaps to select messages by.

• Either way, properties are neither part of the user data, nor part of the
MQMD. They are carried with the message and can be manipulated by
means of a number of new API calls.

Capitalware's MQ Technical Conference v2.0.1.3

Message Handle
� Represents the message

� Retrieved on MQGET

� Can be provided on MQPUT
� MQPMO.Action

� MQACTP_NEW
� MQACTP_FORWARD
� MQACTP_REPLY
� MQACTP_REPORT

� Represents the relationship between two messages

� Create using MQCRTMH

� Delete using MQDLTMH

MQCRTMH(hConn,
&cmho,
&hMsg
&CompCode,
&Reason);

gmo.MsgHandle = hMsg;
MQGET(hConn,

....);

pmo.Action = MQACTP_REPLY;
pmo.OriginalMsgHandle = hMsg;
MQPUT(hConn,

....);

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Message Handle - Notes
• Message properties are manipulated via a message handle. When putting or

getting a message, a message handle can be associated with the message
in order to allow access to the message properties associated with the
message.

• This message handle is a handy mechanism to represent a message and
additionally allows the ability to tie messages together between MQGET and
MQPUT. Without it, there is no way to tell whether the message that was just
sent with MQPUT bears any relation to the message previously retrieved
with MQGET. There is probably a high likelihood that it is, request/reply
being a common model, but no certainty.

• If the message handle representing the message retrieved using MQGET is
passed into a subsequent MQPUT, with an Action that says
MQACTP_REPLY, it is now absolutely clear what the relationship is between
these two messages and any message properties that are important for a
reply type relationship can be automatically copied over.

• Before using a message handle, say on an MQGET, you must first create it
using the MQCRTMH verb. When you are finished using a message handle,
you should delete it using the MQDLTMH verb.

Capitalware's MQ Technical Conference v2.0.1.3

Message Properties
� Verbs to manipulate

� MQSETMP
� MQINQMP
� MQDLTMP

� All take a message handle

� Property types
� MQTYPE_BOOLEAN
� MQTYPE_BYTE_STRING
� MQTYPE_INT8 / 16 / 32 / 64
� MQTYPE_FLOAT32 / 64
� MQTYPE_STRING
� MQTYPE_NULL

� Compatibility with MQRFH2
� Pre-V7 JMS User properties
� API exits, MQMHBUF, MQBUFMH
� Apps

� MQGMO_PROPERTIES_FORCE_RFH2
� Queue attribute

MQSETMP(hConn,
hMsg,
&smpo,
&propName,
&propDesc,
MQTYPE_STRING,
valuelen,
value,
&CompCode,
&Reason);

pmo.NewMsgHandle = hMsg;
MQPUT(hConn,

....);

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Message Properties - Notes
• Having retrieved your message handle, you can then use it to manipulate the

message properties associated with the message.
• You can set a message properties on a message using the MQSETMP verb,

and inquire it using the MQINQMP verb. If you need to remove a message
property from a message handler, there is an MQDLTMP verb.

• When setting a message property, you must provide its name, value and
type. The types are shown on the foil. When inquiring a message property
you are given its type on return, or you can request it is converted into
another type if required. When deleting a message property you simply
provide the property name.

• Additionally there are two other message property related API calls,
MQMHBUF, and MQBUFMH. These will convert the message properties
related to the message into an MQRFH2 header. These calls may be useful
in an API exit that was previously written to manipulate MQRFH2s – perhaps
for JMS User properties in a prior release. Any applications that require an
MQRFH2 for JMS User properties (as in previous releases) can request this
with the option MQGMO_PROPERTIES_FORCE_MQRFH2 – or control it by
means of an attribute on the queue being used.

Capitalware's MQ Technical Conference v2.0.1.3

Selection of messages
� MQSUB

� Subscribing to specific publications on a topic

� MQOPEN
� Getting message from a queue

SubDesc.SelectionString.VSPtr = “Origin = ‘Florida’” ;
SubDesc.SelectionString.VSLength = MQVS_NULL_TERMINA TED

ObjDesc.SelectionString.VSPtr = “Colour = ‘Blue’”;
ObjDesc.SelectionString.VSLength = MQVS_NULL_TERMINA TED;

FRUIT
Price/Fruit

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Selection of messages - Notes
• Message properties can also be used to selectively consume messages. In a

subscribing application you can make a subscription for messages on a
specific topic, but additionally only those message on that specific topic
which match certain criteria. For example, if you were subscribing on the
price of oranges, you might only actually be interested in those where the
message property ‘Origin’ had the value ‘Florida’. Doing this means that
other messages that do not match what you require are never even put to
the subscription destination queue so you do not need to discard those
messages that you don’t want.

• You can also do selection of messages at MQOPEN time if a point-to-point
application wishes to pick out only certain messages. This can be very
advantageous for a network connected client application where the saving in
network usage is important. Beware deep queues though – MQ is not a
database and does not have arbitrary indices for direct access to any
message with any arbitrary selection criteria.

Capitalware's MQ Technical Conference v2.0.1.3

Migration administration for Message Properties

� PROPCTL
� Channel
� Queue

� Values
� COMPAT (default)
� NONE
� ALL
� FORCE

� PSPROP
� Administrative Subscriptions

mqext

usr

jms

mcd

Properties with a prefix

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Migration administration (Properties) - Notes
• Applications that are not written to use these new message property APIs – that is all

your current procedural language applications – would see any message properties as
an MQRFH2 header. If you start writing applications to add message properties or if
you have JMS applications which are using user properties already, the queue
attribute PROPCTL allows you to control this.

• COMPAT only provides message properties to the application if the message contains
properties recognised as JMS user properties that would have been provided to the
application prior to V7 anyway.

• If you application is written to use a message handle, the only value that affects it is
FORCE, which over-rides the fact that a message handle is used by the application
and forces and MQRFH2 to be used anyway.

• Channels that a connected to pre-V7 queue managers need to know whether it is
appropriate to flow new message properties to those queue managers. If V6
applications are written to expect MQRFH2s anyway, you may wish to flow your new
message properties to V6 queue managers, but by default COMPAT means that only
those recognised as JMS user properties are flowed.

• When making an administrative subscription (using the DEFINE SUB command) you
can restrict properties from being added to the messages put on the destination queue
using the PSPROP attribute. One use of administrative subscriptions is to allow non-
pub/sub (and likely non-V7) enabled applications to receive publications. The queue
manager does add some message properties to each publication however, such as
the TopicString, and an unaware application would not be expecting those.

Capitalware's MQ Technical Conference v2.0.1.3

Simplified Browse
� Browsing a queue for all messages

� Using
MQGMO_BROWSE_FIRST
then
MQGMO_BROWSE_NEXT

� Problems with
� Priority Inserts
� Rollbacks
� Latency in picking up these messages

� Browsing a queue for all messages
� Using

MQGMO_BROWSE_FIRST +
MQGMO_UNMARKED_BROWSE_MSG +
MQGMO_MARK_BROWSE_HANDLE

9

5

5

5

5

5

5

5

5

5

5

5

5

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Simplified Browse - Notes
• Browsing a queue for all messages using the MQGMO Options

MQGMO_BROWSE_FIRST followed by repeated calls with
MQGMO_BROWSE_NEXT suffers from “missed” messages when browsing due to
priority insertions and rollbacks of messages that were previously destructively got
from the queue. There is a latency involved in finding these missed messages as the
application has to go back to the start of the queue once it reaches the end to check if
it had missed any.

• An application that wishes to browse all the messages on a queue in the order that
they would be returned to a destructive MQGET can in MQ V7 use the following
MQGMO Options:-

� MQGMO_BROWSE_FIRST +
MQGMO_UNMARKED_BROWSE_MSG +
MQGMO_MARK_BROWSE_HANDLE +
MQGMO_WAIT

• Repeated calls to MQGET with these options would return each message on the
queue in turn. Each message returned is considered, by the object handle using in the
MQGET call, to be marked. This prevents repeated delivery of messages even though
MQGMO_BROWSE_FIRST is used to ensure that messages are not skipped. If
MQRC_NO_MSG_AVAILABLE is returned, then at the time when the call was
initiated, there were no messages on the queue that have not been browsed and that
satisfied any match options supplied.

Capitalware's MQ Technical Conference v2.0.1.3

Browse with Mark options
� MQGMO_MARK_BROWSE_HANDLE

� MQGMO_UNMARKED_BROWSE_MSG

� MQGMO_UNMARK_BROWSE_HANDLE

� Messages stay marked until
� The object handle is closed.
� The message is unmarked for this handle by a call to MQGET using the previously

returned MsgToken with the option MQGMO_UNMARK_BROWSE_HANDLE.
� The message is returned from a call to destructive MQGET.

This is true even if the MQGET is subsequently rolled-back.
� The message expires.

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Browse with Mark Options - Notes
• On the previous foil we saw the use of

MQGMO_MARK_BROWSE_HANDLE to mark which messages we had
already seen. The undo action is MQGMO_UNMARK_BROWSE_HANDLE.

• We also saw the use of MQGMO_UNMARKED_BROWSE_MSG for
requesting that we are only given messages that we have not already
marked as having seen.

• Messages don’t stay marked forever though. There are various events that
can remove marks.

Capitalware's MQ Technical Conference v2.0.1.3

Cooperative Browse
� Optimistic Browse

� MQGMO_BROWSE_FIRST +
MQGMO_UNMARKED_BROWSE_MSG +
MQGMO_MARK_BROWSE_CO_OP

� Dispatch message to consumer
� Or if unable to process

� Unmark
� MQGET for returned MsgToken
� MQGMO_UNMARK_BROWSE_CO_OP

� Pessimistic Browse
� MQGMO_BROWSE_FIRST +

MQGMO_UNMARKED_BROWSE_MSG +
MQGMO_MARK_BROWSE_HANDLE

� If able to process

� Mark cooperatively
� MQGET for returned MsgToken
� MQGMO_MARK_BROWSE_CO_OP

� Dispatch to consumer

App

App

App

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Cooperative Browse - Notes
• “Dispatching” applications are applications which browse messages from a

queue, and (sometimes by inspecting the message) determine and start the
appropriate application to destructively consume the message and process
it. Multiple of these dispatching applications browsing the same queue can
get in one another’s way causing unnecessary starting of consuming
applications.

• There are two view points to take with multiple dispatching applications.
� An optimistic one – that is, it is most likely that the messages that the dispatching application

finds on the queue are ones it can process
� A pessimistic one – that is, many of the messages that the dispatching application finds need

to be processed by another of the dispatching applications.

• Examples of these multiple dispatching applications include:-
� Cloned dispatcher – such as the CICS Bridge on WebSphere MQ for z/OS

This is an optimistic dispatcher
� Multiple dispatchers where processing order is important – such as WAS dispatching MDBs

This is a pessimistic dispatcher
� Multiple dispatchers where processing order is unimportant

This can be an optimistic dispatcher

• With cooperative browse, rather than a set of marks for one object handle,
there is a cooperative set of marks for the queue as a whole.

Capitalware's MQ Technical Conference v2.0.1.3

Cooperative Browse Options
� MQOO_COOP

� MQGMO_MARK_BROWSE_CO_OP

� MQGMO_UNMARKED_BROWSE_MSG

� MQGMO_UNMARK_BROWSE_CO_OP

� ALTER QMGR MARKINT(integer | NOLIMIT)
� Time out after which time if no application has destructively got the message it is

returned to the unmarked pool for reprocessing.

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Cooperative Browse Options - Notes
• In order to indicate you wish to cooperate with other applications browsing

this queue and be aware of their marked messages, you must MQOPEN the
queue using the MQOO_CO_OP option.

• Instead of using MQGMO_MARK_BROWSE_HANDLE, you use
MQGMO_MARK_BROWSE_CO_OP to indicate that the marks are to be
visible to all cooperating applications. To undo there is an option
MQGMO_UNMARK_BROWSE_CO_OP.

• In case a cooperatively marked message has been dispatched, but the
consuming application has abended, there is a timeout to return messages
such as this back to the pool to be reprocessed.

Capitalware's MQ Technical Conference v2.0.1.3

Summary
� Asynchronous Consumption of messages

� Asynchronous Put Response

� Read-ahead of messages

� Connection changes

� Message Properties + Selectors

� Simplified Browse + Co-operative Browse

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Summary - Notes
• WebSphere MQ V7 has substantially increased the functionality of the MQ

API providing mechanisms for more efficient applications and ease of use
improvements to avoid some of the more complicated parts of the MQ API.

MQ Requirements are now RFEs (Request For Enhancements).

Go here http://www.ibm.com/developerworks/rfe/?BRAND_ID=181&PROD_ID=520 and then click
“View All” at the bottom to see all the MQ RFEs. Use the tabs at the top of the page to search for specific
RFEs and vote on them, or to submit a new one.

http://www.ibm.com/developerworks/rfe/?BRAND_ID=181&PROD_ID=520

	Insert from: "MQ RFE.pdf"
	MQ Requirements are now RFEs (Request For Enhancements).

