
WebSphere MQ & TCP Buffers –
Size DOES Matter!

MQTC V2.0.1.3

Arthur C. Schanz
Distributed Computing Specialist

Federal Reserve Information Technology (FRIT)

Disclaimer :
 The views expressed herein are my own and not necessarily those
of Federal Reserve Information Technology, the Federal Reserve
Bank of Richmond, or the Federal Reserve System.

2

About the Federal Reserve System

• The Federal Reserve System, the Central Bank of the United States – Created in
1913 – aka “The Fed”

• Consists of 12 Regional Reserve Banks (Districts) and the Board of Governors
• Roughly 7500 participant institutions
• Fed Services – Currency and Coin, Check Processing, Automated Clearinghouse

(FedACHSM) and Fedwire®
• Fedwire – A real-time gross settlement funds transfer system – Immediate, Final

and Irrevocable
• Fedwire® Funds Service, Fedwire® Securities Services and National Settlement

Services
• Daily average Volume – Approximately 600,000 Originations
• Daily average Value – Approximately $4 Trillion
• Average transfer – $6,000,000
• Single-day peak:

• Volume – 1.2 Million Originations
• Value – $6.7 Trillion

3

Presenter
Presentation Notes
Background information on the Federal Reserve System, Fedwire® and daily volume.

 If you could spend $100,000,000 ($100 Million) per day, how long would it take you
to spend $4 Trillion?

• 1 year?

• 5 years?

• 10 years?

• 50 years?

• 100 years?

 Actually, it would take over 109 years to spend the entire $4 Trillion.

Just for Fun: How much is $4 Trillion?

4

Presenter
Presentation Notes
How much IS 4 Trillion dollars?

Scenario Details

• Major redesign of a critical application
• Platform change – moving from “non-IBM” to “IBM” (AIX)
• Initial use of Confirmation on Arrival (COA)
• QMGRs are located at data centers which are ~1500 Miles

(2400 KM) apart
• 40ms latency for round-trip messages between data centers
• SSL in use for SDR/RCVR channels between the QMGRs
• WMQ V7.1 / GSKit V8
• Combination of JMeter and ‘Q’ program to generate test msg

traffic
• Used 10K byte messages for application traffic simulation

5

Presenter
Presentation Notes
Details on the environment

6

QMGR_A QMGR_B

QMGR_B

QMGR_A

COA.REQ

COA.REPLY

TO.QMGR_B

TO.QMGR_A

COA.REQ

Q

Environment and Message Flow – Msg + COA

Presenter
Presentation Notes
Basic distributed queuing (send and forget) + COA

7

QMGR_A QMGR_B

QMGR_B

QMGR_A

COA.REQ

COA.REPLY

TO.QMGR_B

TO.QMGR_A

COA.REQ

Q

Environment and Message Flow – Msg + COA: MQPUTting it Together

Presenter
Presentation Notes
This is how it ‘should’ work

Initial Observations…Which Led to WMQ PMR

• Functionally, everything is working as expected
• “Q” program reading file and loading 1000 10K byte messages
• No delay seen in generation of COA msgs
• IBM platform shows linear progression in time differential

between MQPUT of original msg by Q and MQPUT of the COA
• “non-IBM” platform does not exhibit similar behavior
• Network core infrastructure is common for both platforms
• Evidence points to a potential issue in WMQ’s use of the

resources in the communications/network layer (buffers?)
• Issue seen as a ‘show-stopper’ for platform migration by Appl

8

Presenter
Presentation Notes
While this is the first implementation of COA, the base configuration and associated QMGRs follow a distributed queuing pattern that has been in use for some time.
Each message takes longer and longer to ‘get on or off the wire’
Network topology is similar
Network sniffer traces show no dropped packets or retransmits
TCP window size changing many times – Is this a clue?
So where is the problem? Could it be some buffering issue somewhere?

Week #1 – IBM Initial Analysis

• Several sets of traces, RAS output and test result spreadsheets
were posted to the PMR

• WMQ L2 indicated that they are “…not finding any unexpected
processing relating to product defects…”, and that “…the
differences between the coa.req and coa.reply times are due
to the time taken to transmit the messages to the remote
qmgr.”

• Received links to tuning documents and info on Perf & Tuning
Engagements ($$$)

• IBM: OK to close this PMR?
• Our Answer: Open a PMR w/ AIX

9

Presenter
Presentation Notes
We knew ‘something wasn’t right’, but could not put a finger on it
IBM WMQ L2 saw no product abnormalities and attributed our ‘delays’ to the transmission time between data centers
Offered P&T documents and suggested a Services engagement to focus on improving Perf
Day 9 – IBM: “OK to close PMR?”
We opened a second PMR w/ AIX and TCP Perf & Support

Week #2 – Let’s Get a 2nd Opinion (When in Doubt, Look at the Trace)

• AIX TCP/IP and Perf L2 request various trace/perfpmr data be
captured on QMGR lpars and VIOS, while executing tests

• Network interfaces showing enormous amount of errors
• SSL Handshake taking an inordinate amount of time, as the

channel PING or START is not immediate. This developed into
another PMR  – However, this is not contributing to the
original problem

• Additional traces requested, using different criteria
• AIX PMR escalated to S1P1 – Executive conference call
• Internal review of WMQ traces reveals several interesting

details…

10

Presenter
Presentation Notes
AIX Support requests the first of what will be more than 20 separate requests for traces, command output and configuration information
Initial analysis shows hundreds of network interface errors
After 11 days, with no appreciable progress, PMR escalated to S1P1
We decided to do our own investigation of WMQ traces…

Week #2 (con’d) – …and When in Doubt, Look at the Trace

• SSL Handshake - GSKit V8 delay issue - 18 secs spent in this call:
12:19:44.621675 10289324.1 RSESS:000001 gsk_environment_init: input: gsk_env_handle=0x1100938b0
*12:20:02.527643 10289324.1 RSESS:000001 gsk_environment_init: output: gsk_env_handle=0x1100938b0

• Qtime of msgs on XMITQ validates the linear progression of MQPUT t/s:
 11:42:45.012377 9306238.433 RSESS:00011e Empty(TRUE) Inherited(FALSE) QTime(5829)
 11:42:45.167286 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(153205)
 11:42:45.169208 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(148920)
 11:42:45.170910 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(145578)
 11:42:45.172451 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(143312)
 11:42:45.256783 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(223727)
 11:42:45.297237 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(259181)
 11:42:45.299316 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(256659)
 11:42:45.379582 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(330958)
…
 11:43:02.309739 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(11701686)
 11:43:02.311993 9306238.433 RSESS:00011e Empty(FALSE) Inherited(FALSE) QTime(11699020)
 11:43:02.314702 9306238.433 RSESS:00011e Empty(TRUE) Inherited(FALSE) QTime(11696105)

11

Presenter
Presentation Notes
Some of the great stuff that can be found by looking at the formatted trace files. 
The SSL handshake delay appears to be in the gsk_environment_init call. Obviously, this is only at channel start time, so is not part of the indiv msg delay.
The increasing values of Qtime (in microseconds) are for the XMITQ. This indicates that the msgs are being delayed on the sending system, prior to them being ‘on the wire’.

12

QMGR_A QMGR_B

QMGR_B

QMGR_A

COA.REQ

COA.REPLY

TO.QMGR_B

TO.QMGR_A

COA.REQ

Q

Environment and Message Flow – What We Were Experiencing

Presenter
Presentation Notes
This is what we were seeing – notice the delay on the XMITQ

Week #2 (con’d) – …and When in Doubt, Look at the Trace

• Negotiated and Set Channel Options/Parameters:
• KeepAlive = 'YES'
• Conversation Type: SSL
• Timeout set to 360 (360) (30)
• GSKit version check '8.0.14.14' >= '8.0.14.12' OK
• TCP/IP TCP_NODELAY active
• TCP/IP KEEPALIVE active
• Current socket receive buffer size: 262088
• Current socket send buffer size: 262088
• Socket send buffer size: 32766
• Socket receive buffer size: 2048
• Final socket receive buffer size: 2048
• Final socket send buffer size: 32766

• PMR update: “This may be at the root of the problem, but I will leave that
determination to the experts.”

13

Presenter
Presentation Notes
From the formatted trace file for the SDR channel (assuming you capture the channel start) you’ll find all of the negotiated and set channel options and parameters
All good info, especially the last 6 lines….which were quite eye-opening

(32K) (32K)

(2K) (2K)

WebSphere MQ – Established
TCP Channel Connection

Both sockets have a send buffer and a receive buffer for data
• write() adds data to the send buffer for transfer
• read() removes data arrived on the receive buffer
• poll() and select() wait for a buffer to be ready

14

Presenter
Presentation Notes
Based on the traces, WMQ issues setsockopt() calls to modify the Send and Receive TCP buffers.
SDR channel: 32K Send buffer – 2K Recv buffer
RCVR channel: 2K Send buffer – 32K Recv buffer
This makes sense, as the data is flowing from SDR to RCVR, while only TCP ACKS are flowing from RCVR to SDR
Diagram borrowed from Justin Fries and his excellent 2-part series entitled, “TCP/IP Configuration and Diagnosis with WebSphere MQ”
Part I: http://www-01.ibm.com/support/docview.wss?uid=swg27013783&aid=1
Part II: http://www-01.ibm.com/support/docview.wss?uid=swg27013802&aid=1

Week #3 – AIX/TCP Tuning (Lather…Rinse…Repeat)

• More traces
• AIX and TCP L2 suggest tuning changes: ‘Largesend=1’ and

‘tcp_sendspace=524288’ & ‘tcp_recvspace=524288’ for network interfaces
• Wireshark shows that ‘Largesend=1’ made performance worse. TCP

window size updates still constantly occurring during test
• Network interface errors were ‘bogus’ – known AIX bug
• VIOS level could be contributing to the problem
• High fork rate
• Tcp_nodelayack
• WMQ PMR escalated to S1
• IBM changes this entire issue to Crit Sit – we now have a dedicated team

to work the issue

15

Presenter
Presentation Notes
Lots of traces requested, both before and after tuning changes
Are we really heading in the right direction?

Week #3 (con’d) – WMQ Tuning – Back to (Buffer) Basics

• More traces
• WMQ L2/L3 suggest increasing both WMQ TCP Send/Recv buffers to 32K,

then 64K, via qm.ini - (But why isn’t this needed on current platform?)
TCP:
 SndBuffSize=65536
 RcvBuffSize=65536
• Change had no positive effect
• We see (and L3 confirms) that trace shows SDR-side and RCVR-side

sockets are in many wait/poll calls, some of which are simultaneous

 11:42:45.381709 9306238.433 RSESS:00011e ---{ cciTcpSend
 11:42:45.381713 9306238.433 RSESS:00011e ----{ send
 11:42:45.381723 9306238.433 RSESS:00011e ----}! send rc=Unknown(B)

• rc=Unknown(B), where B=11 (EAGAIN) - No buffer available

16

Presenter
Presentation Notes
We resisted making changes to qm.ini, as it applies to ‘ALL’ connections to the QMGR
Also, we have no qm.ini overrides on the current system
We decided to test – no benefit seen 
Again – the trace may show some clues.

Week #3 (con’d) – More WMQ and AIX Tuning

• More traces
• AIX Perf team suggests ‘hstcp=1’
• WMQ L3: “Delays are outside of MQ’s control and requires further

investigation by OS and Network experts”
• AIX L3: “We are 95% sure that an upgrade to VIOS will correct the issue”
• We determined that AIX L3 had made several tuning recommendations by

looking at the wrong socket pair…none of which had any positive effect
• AIX L3: “It appears that TCP buffers need to be increased.” Value chosen:

5MB.
• Pushed back on making that change, but IBM WMQ L2/L3 agreed with

that recommendation
• Tests also requested w/ Batchsize of 100, then 200

17

Presenter
Presentation Notes
Why is all of this ‘tuning’ needed?
AIX/TCP team treating this as a network latency issue
5MB TCP buffers is, quite frankly, ridiculous

Week #3 (con’d) – More WMQ and AIX Tuning

• 5MB buffers showed some improvement (How could they not?!)
• Batchsize changes did not show significant improvement
• Removed trace hooks (30D/30E), set ‘tcp_pmtu_discover=1’ &

‘tcp_init_window=8’, as they were said to be “pretty significant” to
increased performance. They weren’t. 

• Back to the $64,000 question – Why do we need changes on this new
platform, but not on the current platform, all other things being equal?

• While IBM contemplates their next recommendation, we decided to take a
closer look at the two environments, more specifically the WMQ TCP
buffers. What is actually happening ‘under the covers’ during channel
negotiation.

• Guess what we found?

18

Presenter
Presentation Notes
Results getting better, but at what cost?
Why are the profiles so different?
Let’s go back and see

Week #3 (con’d) – All Flavors of Unix are NOT Created Equal

• SDR channel formatted trace file for new (AIX) platform:
• Current socket receive buffer size: 262088
• Current socket send buffer size: 262088
• Socket send buffer size: 32766
• Socket receive buffer size: 2048
• Final socket receive buffer size: 2048
• Final socket send buffer size: 32766

• SDR channel formatted trace file for current (non-IBM) platform:
• Current socket receive buffer size: 263536
• Current socket send buffer size: 262144
• Socket send buffer size: 32766
• Socket receive buffer size: 2048
• Final socket receive buffer size: 263536
• Final socket send buffer size: 32766

 IBM platform uses setsockopt() values – non-IBM uses hybrid

19

Presenter
Presentation Notes
Notice anything interesting?
IBM platform honors the request, whereas non-IBM does not – why?
Now obvious where the problem is, right?

Week #3 (con’d) – All Flavors of Unix are NOT Created Equal

• RCVR channel formatted trace file for new (AIX) platform:
• Current socket receive buffer size: 262088
• Current socket send buffer size: 262088
• Socket send buffer size: 2048
• Socket receive buffer size: 32766
• Final socket receive buffer size: 32766
• Final socket send buffer size: 2048

• RCVR channel formatted trace file for current (non-IBM) platform:
• Current socket receive buffer size: 263536
• Current socket send buffer size: 262144
• Socket send buffer size: 2048
• Socket receive buffer size: 32766
• Final socket receive buffer size: 263536
• Final socket send buffer size: 2048

 IBM platform uses setsockopt() values – non-IBM uses hybrid

20

Presenter
Presentation Notes
Notice anything interesting?
IBM platform honors the request, whereas non-IBM does not – why?
Now obvious where the problem is, right?

Week #3 (con’d) – If Only it Were That Easy

• This should be simple – hard code the Send/Recv buffer values that are
being used in the current environment into the qm.ini for the QMGR in
the new environment, retest and we should be done:

TCP:
 SndBuffSize=32766
 RcvBuffSize=263536
• Success? Not so much – In fact, that test showed no difference than the

‘out of the box’ values?!? Now what?
• Of course – more AIX tuning – ‘tcp_init_window=16’, increase CPU

entitlements to lpars and increase VEA buffers…no help
• Wireshark shows 256K max ‘Bytes in Flight’, even with 5MB buffers
• AIX L3 supplies TCP Congestion Window ifix – “Silver Bullet”
• WMQ L3 requests a fresh set of traces, for both platforms
• This is their analysis:

21

Presenter
Presentation Notes
If it seems too good to be true, it usually is
More AIX/TCP tuning is ineffective
Additional ‘fresh’ WMQ traces requested

Week #4 – WMQ L3 Analysis of Latest Traces

 Non-IBM AIX
 WMQ 7.0.1.9 WMQ 7.1.0.1
 non-SSL SSL

Log write avg: 2359us 1562us
ccxSend avg: 165us 3234us
Send avg: 55us 122us
Send max: 187us 10529us
ccxReceive avg: 91ms 177ms
ccxReceive min: 74ms 100ms
Batch size: 50 50
MQGET avg: 6708us 2784us
Msg size: 10K 10K
Overall time: 10s 10s
 Notes:
ccxSend: This is the time to execute the simple MQ wrapper function ccxSend
 which calls the TCP send function.
Send: A long send might indicate that the TCP send buffer is full.
ccxReceive: This is the time to execute the simple MQ wrapper function ccxReceive
 which calls the TCP recv function.

 22

Presenter
Presentation Notes
Interesting to see this data presented in this table.
Notice the differences in ccxSend avg and Send max
IBM thought was that differences in ccxSend were all due to SSL
7.1 had better MQGET times, due mostly to the better log write times
Data still indicates a potential buffer issue

Week #4 (con’d) – WMQ L3 Analysis of Latest Traces

• We temporarily disabled SSL on AIX and saw a definite improvement – it
was comparable w/ the current platform. (The fallacy here is that it
should be better!)

• In addition, we are still using 5MB Send/Recv buffers, so this is not a viable
solution.

• With all of the recommended changes that have been made, we
requested IBM compose a list of everything that is still ‘in play’, for both
AIX and WMQ. What is really needed vs. what was an educated guess.

• IBM believes they have met/exceeded the original objective of
matching/beating current platform performance.

• Exec. conf call held to discuss current status, review recommended
changes and determine next steps.

• Most importantly – We are still seeing the increasing Qtime.

23

Presenter
Presentation Notes
We are still not getting to root cause
Let’s stop and take a look at what we have changed and why (>15 AIX/TCP settings + WMQ TCP buffers)

Week #4 (con’d) – You Can’t (Won’t) Always Get What You Want

• There had to be some reason why, when hard-coding the values being
used on the non-IBM system, we did not see the same results

TCP:
 SndBuffSize=32766
 RcvBuffSize=263536
• Looking at the traces, something just didn’t seem right
• Were we actually getting the values we were specifying in qm.ini? It did

not appear so.
• There had to be an explanation
• What were we missing?
• As it turns out, a very important, yet extremely difficult to find set of

parameters was the key…

24

Presenter
Presentation Notes
Seems like we are getting nowhere fast.
We keep searching the Web, looking for help
Finally, our ‘persistence’ pays off

Week #4 (con’d) – Let’s Go to the Undocumented Parameters

• Sometimes, all it takes is the ‘right’ search, using your favorite search
engine.

• We found some undocumented (‘under-documented’) TCP buffer
parameters, that complement their more well-known brothers:

TCP:
 SndBuffSize=262144
 RcvBuffSize=2048
 RcvSendBuffSize=2048
 RcvRcvBuffSize=262144

• Now it’s starting to make sense.
• Now we see why the traces were not showing our values being accepted.
• Now we know how to correctly specify the buffers for both SDR and RCVR

25

Presenter
Presentation Notes
Tucked away, in a WMB performance Support Pack, was the answer!
Another set of TCP Send/Recv buffers – who knew?

(32K) (32K)

(2K) (2K)

WebSphere MQ – Established
TCP Channel Connection

Both sockets have a send buffer and a receive buffer for data
• write() adds data to the send buffer for transfer
• read() removes data arrived on the receive buffer
• poll() and select() wait for a buffer to be ready

26

Presenter
Presentation Notes
Remember that default values are 32K Send/2K Recv for a SDR and 2K Send/32K Receive for a RCVR

(256K) (256K)

(2K) (2K)

WebSphere MQ – Established
TCP Channel Connection

SndBuffSize=256K
(Default is 32K)

RcvRcvBuffSize=256K
(Default is 32K)

RcvSndBuffSize=2K
(Default is 2K)

RcvBuffSize=2K
(Default is 2K)

Both sockets have a send buffer and a receive buffer for data
• write() adds data to the send buffer for transfer
• read() removes data arrived on the receive buffer
• poll() and select() wait for a buffer to be ready

‘Under-
documented’

tuning parameters

27

Presenter
Presentation Notes
Coding all 4 of the TCP buffer parameters got us the expected and desired results

Conclusions – What We Learned

• Desired values for message rate and (lack of) latency were achieved by
tuning only WMQ TCP Send/Recv buffers. (‘tcp_init_window=16’ was also
left in place, as it produced a noticeable, albeit small performance gain)

• The use of the ‘under-documented’ TCP parameters was the key in
resolving this issue.

• Continue doing in-house problem determination, even after opening a
PMR.

• Do not be afraid to push back on suggestions/recommendations that do
not feel right. No one knows your environment better than you.

• Take some time to learn how to read and interpret traces. (Handy ksh cmd
we used: find . –name ‘*.FMT’ | xargs sort –k1.2,1 > System.FMTALL,
which creates a timestamp-sorted formatted trace file from all indiv files)

• TCP is complicated – Thankfully, WMQ insulates you from almost all of it.
• Keep searching the Web, using different combinations of search criteria –

you never know what you might find. 

28

Presenter
Presentation Notes
What a ride!
We learned a lot…and so did IBM, I believe
Room for improvement on communication

Presenter
Presentation Notes
Questions?

Arthur C. Schanz
Distributed Computing Specialist

Federal Reserve Information Technology
Arthur.Schanz@frit.frb.org

Quazi Ahmed Chad Little

Josh Heinze Larry Halley

Presenter
Presentation Notes
Special thanks go to my colleague, Chad Little, for his assistance, insight and collaboration on the PMR and this presentation. Also, sincere thanks to Dr. Quazi Ahmed (P&T), Josh Heinze and Larry Halley (OS),

Appendix: TCP Init Window Size

10GE

41ms
Round trip

TCP – 256KB Maximum Window

Site 1 Site 2

• AIX Initial TCP Window Size is 0, which causes TCP to perform dynamic window size
increases (‘ramp-up’) as packets begin to flow across the connection.

• 1K -> 2K -> 4K -> 8K -> 16K ->…

• Increasing the ‘tcp_init_window’ parameter to 16K allows TCP to start at a larger
window size, therefore allowing a quicker ramp-up of data flow.

31

Presenter
Presentation Notes
Details on the tcp_init_window parameter

	WebSphere MQ & TCP Buffers –�Size DOES Matter!
	Disclaimer :� The views expressed herein are my own and not necessarily those of Federal Reserve Information Technology, the Federal Reserve Bank of Richmond, or the Federal Reserve System.
	About the Federal Reserve System
	Just for Fun: How much is $4 Trillion?
	Scenario Details
	Slide Number 6
	Slide Number 7
	Initial Observations…Which Led to WMQ PMR
	Week #1 – IBM Initial Analysis
	Week #2 – Let’s Get a 2nd Opinion (When in Doubt, Look at the Trace)
	Week #2 (con’d) – …and When in Doubt, Look at the Trace
	Slide Number 12
	Week #2 (con’d) – …and When in Doubt, Look at the Trace
	Slide Number 14
	Week #3 – AIX/TCP Tuning (Lather…Rinse…Repeat)
	Week #3 (con’d) – WMQ Tuning – Back to (Buffer) Basics
	Week #3 (con’d) – More WMQ and AIX Tuning
	Week #3 (con’d) – More WMQ and AIX Tuning
	Week #3 (con’d) – All Flavors of Unix are NOT Created Equal
	Week #3 (con’d) – All Flavors of Unix are NOT Created Equal
	Week #3 (con’d) – If Only it Were That Easy
	Week #4 – WMQ L3 Analysis of Latest Traces
	Week #4 (con’d) – WMQ L3 Analysis of Latest Traces
	Week #4 (con’d) – You Can’t (Won’t) Always Get What You Want
	Week #4 (con’d) – Let’s Go to the Undocumented Parameters
	Slide Number 26
	Slide Number 27
	Conclusions – What We Learned
	Slide Number 29
	Slide Number 30
	Appendix: TCP Init Window Size

