
25/09/2013

1

Capitalware's MQ Technical Conference v2.0.1.3

Extending MQ Explorer

Mark Taylor

marke_taylor@uk.ibm.com

IBM Hursley

© 2013 IBM Corporation

Introduction

• I am going to show how to extend the MQ Explorer with new function
‒ There will be code

‒ But not too much

• My experience … SupportPac MS0P now contains 11 plugins providing
‒ Event formatting

‒ Activity monitoring

‒ CSV exports for table

‒ Connection wizard

‒ Message Manager

‒ Topic Viewer

‒ Traceroute

‒ Remote Admin

• See http://www.youtube.com/playlist?list=PLEE594DC49986AB67
‒ Search for MS0P

http://www.youtube.com/playlist?list=PLEE594DC49986AB67
http://www.youtube.com/playlist?list=PLEE594DC49986AB67

25/09/2013

2

© 2013 IBM Corporation

What is MQ Explorer (MQX)

• An configuration tool based on Eclipse

• Basic function includes configuration of MQ and JMS resources

Content View
Navigator View

© 2013 IBM Corporation

Why Eclipse

• Eclipse is an open-source platform originally designed for application

development tooling

• Provides core technologies which can then be extended with plug-ins
‒ Giving common look-and-feel

• Many products and solutions use Eclipse-provided components
‒ Then build unique value on top

• Enables cross-platform products without native coding
‒ The most visible pieces (GUI widgets) use platform-specific implementations

‒ Abstract interface (SWT) hides the details

25/09/2013

3

© 2013 IBM Corporation

Plug-ins

• Eclipse runtime is a small core program

• Provides extension points

• Plug-ins use those extension points

• Runtime dynamically discovers the plug-ins

plug-in

extension

point

Eclipse

runtime

© 2013 IBM Corporation

MQX implementation

• A set of plug-ins

• Which in turn provide further extension points

• Simplifying the addition of function
‒ Either by other product-provided plug-ins

‒ Or by third parties

Eclipse

runtime

Eclipse

plug-ins

MQX

plug-in

addTreeNode

registerPlugin

25/09/2013

4

© 2013 IBM Corporation

MQX packaging

• Packaging has changed over time

• Originally shipped only as part of the full MQ product

• Now also downloadable as SupportPac MS0T
‒ Identical code to that in the product

‒ But does not contain JNI libraries so cannot see any local queue managers

‒ “Client-only” approach

‒ Embeds the MQ Java client

• Originally included a full Java development environment
‒ Though not visible by default

‒ One of the standard Eclipse packages

• Now includes only the pieces needed for MQX to run
‒ Runs as “RCP” application

‒ But can be imported into other Eclipse environments

 CICS Explorer, IDE etc

• Examples here will show V7.1/V7.5 formats

© 2013 IBM Corporation

Writing plug-ins

• An MQ plug-in exploits MQ-specific extension points
‒ Making it easy to access defined queue managers

• But also any other Eclipse extension point

• There’s no requirement for an MQX plug-in to do anything with MQ
‒ For example, the service definition repository is mostly independent

• But you will probably use the MQ Java classes to interact with MQ
‒ Full MQI available

‒ PCF classes

25/09/2013

5

© 2013 IBM Corporation

MQX with extensions

© 2013 IBM Corporation

What can you extend and modify

• In the navigator view:
‒ Can add menu items to any tree

node

‒ Can add new nodes

• In the content view:
‒ Can add menu items to items in

table

• Can add new views
‒ Arbitrary content

• Can inhibit some MQX operations
‒ eg Block a queue manager from

being deleted

• Can add tabs to object property

windows

• Can add to import/export

25/09/2013

6

© 2013 IBM Corporation

What can you not (easily) extend or modify

• Cannot delete existing menu items
‒ Or reorder them

• Cannot add to toolbars

• Cannot access object properties
‒ Unless you use PCF commands

• Cannot add a new top-level tree node

• Cannot use existing text (translations) or icons

• The shipped core Eclipse plug-ins are limited scope
‒ For example, do not have gef (graphical editors) or emf (model editors)

‒ These can be added to MQX

‒ Or you might require MQX to be run inside another Eclipse

© 2013 IBM Corporation

Adding public plug-ins

25/09/2013

7

© 2013 IBM Corporation

Getting started

• To begin writing a plug-in, you need a development environment

• I was originally able to use the MQX-provided IDE
‒ But that disappeared in V7.1

• My system now consists of a standard Eclipse 3.6.1 download
‒ And then adding the MQX plug-ins to it

‒ And any other plug-ins you care about (eg version control)

‒ Lets me target V7.1 and later levels of MQX

• Open the plug-in development perspective and create a new project
‒ This will create basic parts you will need for any Eclipse plug-in

 Activator class and plugin.xml

‒ An MQ plug-in has additional requirements

© 2013 IBM Corporation

Getting started

25/09/2013

8

© 2013 IBM Corporation

Wizard-created template

© 2013 IBM Corporation

Dependencies

• The Manifest file shows which plug-ins you are dependent on
‒ This file is edited in the same set of tabs with plugin.xml

• Can define version prereqs in here as well
‒ Most MQ plug-ins will have a similar set of dependencies

25/09/2013

9

© 2013 IBM Corporation

The MQX Extension Points

• There are several extension points

• The most important provided by MQX are
‒ registerPlugin

‒ addTreeNode

‒ addContentPage

‒ addImportExportSubcategory

• And the most commonly-used Eclipse extensions used in parallel are
‒ popupMenus

‒ preferencePages

• Define which extensions are being used, and any parameters, in plugin.xml
‒ Eclipse knows the format of this file and can help fill it in

© 2013 IBM Corporation

registerPlugin extension point

• Registers a plug-in with MQX to receive event notifications
‒ Your class implements IExplorerNotify

‒ The plugin.xml stanza names the plug-in, names the class, gives descriptions

• Notifications include
‒ MQX initalised or closing

‒ Your plug-in is enabled or disabled

‒ Queue manager added or removed

• Eclipse Java editor can create the class with empty methods
‒ Showing TODO

• The MQX Preferences section “Enable Plug-ins” shows your plug-in
‒ Disabling a plug-in in here will automatically remove its nodes and content pages

25/09/2013

10

© 2013 IBM Corporation

Enabling MQ Plug-ins

© 2013 IBM Corporation

Plug-in lifecycle

• Plug-ins have a lifecycle
‒ Enabled/disabled

‒ Started/stopped

• Eclipse will load your plug-in
‒ Activator is initialised (constructor), then “start”

‒ Then MQX “enables” plug-in

‒ MQX may not yet have completed its initialisation

 So you may not be able to do anything yet

‒ After “start” AND “enabled” AND “explorerInitialised”

 THEN you can start working

• Asynchronous operations and parallelism means these may not always

happen in the same order

• Similarly at shutdown, there are several opportunities to clean up

• One class could extend AbstractUIPlugin and implement IExplorerNotify
‒ I prefer to have two classes

25/09/2013

11

© 2013 IBM Corporation

addTreeNode extension point

• Allows plug-ins to contribute tree nodes to the Navigator View

• Plug-in specifies a class implementing ITreeNodeFactory
‒ Responsible for creating and adding tree nodes

• The Navigator view extends the Eclipse CommonNavigator class
‒ So there may be helpful methods available

‒ For example to select a node

• One parameter to the extension point is the plug-in ID
‒ This must match the name used when the plug-in was registered

© 2013 IBM Corporation

addContentPage extension point

• Allows plug-ins to contribute pages to the Content View

• Plug-in specifies a class implementing IContentPageFactory
‒ Responsible for creating content pages

• Tree nodes know which content page should be shown when selected

• So in plugin.xml

• And in RATreeNode.java

<extension point="com.ibm.mq.explorer.ui.addcontentpage">

<contentPage

contentPageId="com.ibm.mq.explorer.ra.servers.folder.content"

pluginId="com.ibm.mq.explorer.ra"

class="com.ibm.mq.explorer.ra.content.AdminContentPageFactory"

name="RA Content"/>

</extension>

 public String getContentPageId() {

 return "com.ibm.mq.explorer.ra.servers.folder.content";

 }

25/09/2013

12

© 2013 IBM Corporation

popupMenus extension point

• Eclipse extension point
‒ But mediated by MQX

• Adds menu items to objects in tables or nodes in tree

• Menu visibility can depend on state
‒ e.g. only connected Queue Managers

• The class you write has a selectionChanged() method
‒ When an item is selected either in the content or navigator view

‒ Table items are an MQExtObject class

‒ Tree nodes return that object via the getObject method

• Can easily derive which queue manager is associated with an object
‒ For example, if your menu is selected for a queue

• Then the run() method is invoked

© 2013 IBM Corporation

popupMenus extension point

• Getting the order of your menu items correct can be challenging
‒ Eclipse seems to add them in reverse order to how they appear in the XML

‒ menubarPath will usually be set to “additions”

• Adding submenus can be done but it is not obvious

• Cannot have one entry to add an item for both an object and a tree node
‒ For example, adding same menu to the qmgr in the Navigator and in the Content

table

‒ Same class can be referenced but needs to clauses in plugin.xml

25/09/2013

13

© 2013 IBM Corporation

Menu definition in plugin.xml fragment

<extension point="org.eclipse.ui.popupMenus">

 <objectContribution adaptable="false"

 objectClass="com.ibm.mq.explorer.ui.extensions.TreeNode"

 id="com.ibm.mq.explorer.remote.admin.popup.GotoQMgr">

 <visibility>

 <and>

 <objectState value="com.ibm.mq.explorer.treenode.qm."

 name="TreeNodePrefix"/>

 <objectState value="com.ibm.mq.explorer.remote.admin"

 name="PluginEnabled"/>

 </and>

 </visibility>

 <action

 class="com.ibm.mq.explorer.ra.menuactions.MyActions"

 enablesFor="1"

 id="com.ibm.mq.explorer.ra.action.GotoQMgr"

 label="Select Server"/>

 </objectContribution>

</extension>

© 2013 IBM Corporation

Adding menu items

25/09/2013

14

© 2013 IBM Corporation

Adding popup menu details

© 2013 IBM Corporation

Selecting the object

25/09/2013

15

© 2013 IBM Corporation

Adding visibility filters

© 2013 IBM Corporation

Checking that our plug-in is enabled

25/09/2013

16

© 2013 IBM Corporation

Checking that the object is a queue

© 2013 IBM Corporation

Creating the action

25/09/2013

17

© 2013 IBM Corporation

Setting action details

© 2013 IBM Corporation

Creating the menu action class

25/09/2013

18

© 2013 IBM Corporation

Simple action implementation

© 2013 IBM Corporation

Test out the new menu item

25/09/2013

19

© 2013 IBM Corporation

Nesting preference pages

• Adding preference pages under the main MQX panel
‒ And then having further sub-pages

<extension point="org.eclipse.ui.preferencePages">

 <page class="...ms0p.events.eclipse.ViewPreferencePageRoot"

 category="com.ibm.mq.explorer.prefmain"

 name="MS0P: Events, Statistics, and more"

 id="…ms0p.events.eclipse.ViewPreferencePageRoot">

 </page>

 <page

 class="...ms0p.events.eclipse.ViewPreferencePageEvents"

 category="...ms0p.events.eclipse.ViewPreferencePageRoot"

 name="Events and Statistics"

 id="...ms0p.events.eclipse.ViewPreferencePageEvents">

 </page>

</extension>

© 2013 IBM Corporation

Working with a queue manager

• Assume that your plug-in has had its action invoked for a queue

• Your selectionChanged() method uses getParent() until it finds the qmgr
‒ An instance of the MQQmgrExtObject class

• Call getMQQueueManager() returns a connection to this queue manager
‒ So you do not need to worry about client configurations etc

‒ This connection is for your private use, so disconnect when done

MQQueueManager qMgr = null;

if (selectedMQQmgrExtObject != null) {

 // This is a new connection, not a ref to the existing one

 qMgr = selectedMQQmgrExtObject.getMQQueueManager();

 … do some work with the connection …

}

try {

 if (qMgr != null)

 qMgr.disconnect();

} catch (Exception e) { // ignore exceptions

}

25/09/2013

20

© 2013 IBM Corporation

Tips, Tricks and Techniques (1)

• I found the Java to be “easy”, but getting the plugin.xml right was harder
‒ Find another plug-in that seems to hook similar ways to what you want

‒ The XML is accessible to review, even when the rest of the source is not

• Some values need to be the same in both plugin.xml and the Java code
‒ No easy way to do that with a single definition so use good naming conventions

• Insert plenty of trace and debug in the code
‒ I use a trivial wrapper to put things to stdout so they appear in the console when

launched as child of the development environment

• Do long-running work in background threads
‒ GUI can only be updated in main thread

‒ SWT will throw exception if called from wrong thread

© 2013 IBM Corporation

Tips, Tricks and Techniques (2) - Java reflection

• There are lots of classes and methods in Eclipse … not always easy to

work out what to use

• Java reflection classes and methods can be very useful
‒ Even when there are no guarantees of ongoing compatibility

• My CSV plug-in adds an item to the toolbar of most MQX tables
‒ And then discovers the content of those tables

• There is no convenient mechanism in MQX to do any of that

• So the CSV code works first by
‒ Hooking documented Eclipse methods to find all existing windows and parts

‒ And asking to be notified if new windows and parts are created

‒ If the MQ content view part exists or is created then add to the toolbar

• Then, it uses Java reflection to recursively decode the contents of the part
‒ For each field in the current part, look at its type, and if it seems promising, look

at that subtype’s fields

‒ Until it finds a Table widget

‒ At first, done under the debugger by hand to see if it worked at all

25/09/2013

21

© 2013 IBM Corporation

Tips, Tricks and Techniques (3) –Templates and skeletons

• After writing a few plug-ins, a skeleton of core function simplifies the next
‒ More function than the wizard-generated outlines

‒ Gets basic operations running soon after your initial idea

• A template will deal with the lifecycle flows
‒ Allocate and cleanup resources at the right times

‒ Debug

‒ A single menu item that can be invoked

‒ Handy utilities for formatting or verification etc

• Eclipse wizards can help initial steps
‒ But copy/paste is soon faster

• I’m now starting to move utility methods out of individual MS0P plug-ins
‒ And into a single “internal” plug-in

‒ So there aren’t multiple similar copies

• Consider having simple standalone programs to drive dialog panels
‒ To help with constant redesign of SWT layouts

‒ Much faster than relaunching the whole Eclipse and getting to the right place

© 2013 IBM Corporation

Samples

• Samples provided with product
‒ “simple” and “menus”

• These are in the plugins directory under your MQX installation
‒ com.ibm.mq.explorer.sample.menus_<version>.jar

‒ com.ibm.mq.explorer.sample.simple_<version>.jar

• The jar files can be expanded to show source
‒ Java code

‒ XML configuration

25/09/2013

22

© 2013 IBM Corporation

MQX Documentation

• Javadoc provided for MQX external interfaces

• In a jar file in the plugins directory

© 2013 IBM Corporation

Eclipse documentation

• Full set of Javadoc for Eclipse classes is in the SDK

• SWT help is at http://www.eclipse.org/swt/
‒ Including samples and snippets

• Books:
‒ I used "Java Developer's Guide to Eclipse" (D'Anjou, Fairbrother et al)

‒ Plenty of newer ones now available

‒ And specialised ones on EMF etc

http://www.eclipse.org/swt/
http://www.eclipse.org/swt/
http://www.eclipse.org/swt/

25/09/2013

23

© 2013 IBM Corporation

Testing

• Initial (unit) testing can be done from within the development environment

• “Run configurations”
‒ What to launch

‒ Special configurations

‒ Which JRE

‒ Which other plug-ins

‒ Clean workspace?

• The same configurations are used for debug
‒ For setting breakpoints, looking at variables etc

• But you then need to test with real installed MQX instances
‒ I have seen examples of missing prereqs or bad version numbers

‒ The prereq checking seems different from the IDE launch than runtime

© 2013 IBM Corporation

Run configurations

25/09/2013

24

© 2013 IBM Corporation

Compiling, Building, Shipping

• Plug-ins can be delivered and installed in a variety of ways

• Each plug-in may be a subdirectory structure or a single jar
‒ Compilation process must produce these

‒ Eclipse integrates with ant tasks for building

• 3 installation mechanisms
‒ Put the plug-in tree into the “dropins” directory

‒ Put plug-ins in a private directory and point to it via a file in the “links” directory

 Message Broker Explorer uses this

‒ Package for use with the Eclipse “site” installer

 More complex to build these, assembling individual plug-in jars and having a feature

 But may be preferred, especially for centralised delivery

• One issue has been seen with Windows
‒ When UAC is active, changes using any of these mechanisms can require

running Explorer once “with admin authority”

‒ Once processed, do not need admin authority

© 2013 IBM Corporation

Extract from ant build.xml

<property file="${basedir}\..\build_properties.xml"/>

<path id="classpath.refid">

 <fileset dir="${eclipsePluginsHome}">

 <include name="com.ibm.mq.*****.jar" />

 <include name="com.ibm.mq.*.jar" />

 <include name="org.**.jar" />

 <include name="org.eclipse.*.jar" />

 </fileset>

 <fileset dir="${mqPluginsHome}">

 <include name="com.ibm.mq.*****.jar" />

 <include name="com.ibm.mq.*.jar" />

 </fileset>

 <fileset dir="${rasHome}">

 <include name="***.jar" />

 </fileset>

</path>

<pathconvert targetos="windows"

 property="classpath" refid="classpath.refid“/>

<target name="classes" depends="clean">

<javac srcdir="${basedir}\src" executable="${javac}"

 destdir="${buildClassesPath}" fork="no" optimize="true“

 debug="false">

 <classpath refid="classpath.refid" />

</javac>

</target>

25/09/2013

25

© 2013 IBM Corporation

Troubleshooting

• Exceptions are not always visible
‒ They are often propagated up to Eclipse and ignored

• But they may appear in the errorlog

• They will appear in the console when launched from within the

development environment

• Normal MQ error logs and FFSTs will be created if you misuse MQ

© 2013 IBM Corporation

Summary

• Writing plug-ins is a good way to add value to MQ

• Without needing to write a load of framework code

• Can get straight into the real work

