
Capitalware's MQ Technical Conference v2.0.1.5

IBM MQ

Presenting a technical solution pattern for

Enabling Auto-Segmentation of Messages

That Have Properties Defined on Them

Greg Brown

CACI International Inc. (caci.com)

1

Capitalware's MQ Technical Conference v2.0.1.5

This session is for messaging application developers who wish to

exploit the message auto-segmentation feature of IBM® MQ queue

managers for messages on which properties have been defined.

In This Session …

2

Why????

Because, OOTB, MQ has never been able to do this!

Typical work-around is to increase the max message size of every

relevant IBM® MQ object (up to 100MiB) and be done with it.

• Acceptable for smaller messaging infrastructures.

• Administrative footprint increases geometrically as messaging

infrastructure grows.

• Prefer a solution option that has zero administrative impact and

is simple to implement.

Capitalware's MQ Technical Conference v2.0.1.5

 Overview of background history on problem discovery

and interaction with L2 / L3 support.

What We’ll Cover …

3

 Overview of queue manager mediated auto-

segmentation of large messages.

 An investigation into the fault mechanics.

 Presentation of a technical implementation pattern.

 A description of the fault-generating environment.

 Code enhancements to the message putting application

 Code enhancements to the message getting application

Capitalware's MQ Technical Conference v2.0.1.5

Some context and history …

4

Messaging environment:

 Messages have several properties defined on them:

 - total length of property names and their values < 2KiB.

 More than 98% of messages are less than 2KiB in size.

 Messages containing monthly, quarterly and annual aggregate

data can be several tens of MiB in size.

 The default 4 MiB limit on message size for (most) IBM® MQ

objects was quite acceptable:

 - simplified post-configuration of IBM® MQ deployments.

 Rely on queue manager mediated auto-segmentation of

the relatively few messages > 4 MiB in size.

Capitalware's MQ Technical Conference v2.0.1.5

Some context and history (cont.) …

5

 November 15, 2013:

 * Opened PMR 92419.499.000 (Sev2).

 December 10, 2013:

 * APAR IC98231 created.

 February 4, 2014:

 * WebSphere MQ FP 7.5.0.3 announced; IC98231 not included!

 February 11, 2014:

 * L3 identifies possible solution; L2 proceeds with prototyping

 the fix.

 February 21, 2014:

 * L3 announces that no code fix will be done; will document the

 bug as a feature “restriction”!

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

From IBM L2 support 2013.11.20

“I reviewed the traces files and did find the first part of the
segmented message was larger than the MAXMSGL for the SCTQ (system
cluster transmission queue).

I also found that the channel agent for the cluster channel was unable
to get this message because even though it did several calls to get the
message from the queue with a buffer size large enough to hold it the
MQGET call only returned 4MiB and an error that the message was
truncated.

I searched but could not find a match to this problem. I have sent the
PMR to our L3 team to review. Since this is a Sev2 PMR I need to ask
what is the timeframe needed to resolve the issue.”

5.1

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

From IBM L3 support 2013.12.10

“I have isolated the cause of the issue. When the MCA reads the message
from the queue, the properties are prepended to the message in an MQRFH2
header. This header causes the message length to increase beyond the
MAXMSGL, and so the message cannot be read from the queue.

Please raise an APAR for this issue. I will need to consult development
to devise the best solution for this issue, so the APAR will not be
fixed quickly; the earliest date that I expect the APAR to be completed
is the end of the month, 31st Dec.”

5.2

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

From IBM L2 support 2014.02.11

“A possible method of fixing this issue has been agreed following
consultation with Development. I intend to prototype the suggested fix
and consult Development again before completing the APAR.

This will delay the completion of the APAR until L3 and Development are
entirely satisfied that the proposed fix will not have unintended
consequences, or cause any regressions.

Note that one outcome of the APAR is that only the documentation will be
amended to cover this situation. I expect that a final decision on the
resolution of this APAR will be taken by Feb 28; if a code fix is done,
then it can be made available at 7.5.0.[4].”

5.3

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

From IBM L2/L3 support 2014.04.21-22

“It has been decided following consultation with Development that this
issue will be documented as a restriction, rather than a code fix being
made.” (the next day) “Let me explain our intentions...

The current plan for IC98231 is to close it as a documentation change,
altering the InfoCenter to state that the channel's maximum message
length attribute should take into account the length of any message
properties which may be attached to the message.

Making the code changes which would be needed to resolve this issue have
been deemed as extremely risky (due to concerns on how receiving clients
may reconstruct the message) - and we don't want to risk breaking
compatibility with older clients, nor regressing this important
function, potentially causing serious issues for our customers.

The feeling in the lab is that the benefit of fixing the problem is
significantly outweighed by the risks introduced by that fix. Given
that the workaround for the issue is simple and well understood, it is
felt that documenting the workaround as a restriction is the lesser of
two evils.”

5.4

Capitalware's MQ Technical Conference v2.0.1.5

IBM® MQ Queue Manager Mediated

Auto-Segmentation of Large Messages

6

QMMAS has been a feature of distributed IBM® MQ since at least

version 2 (twenty years ago as “MQ Series”).

- PMO.Options = (app-specific options)

- MD.MsgFlags = MQMF_SEGMENTATION_ALLOWED

- memcpy(MD.GroupId, MQGI_NONE, MQ_GROUP_ID_LENGTH)

 On the MQGET side:
 - GMO.Options = MQGMO_COMPLETE_MSG | (app-specific options)

“The queue manager splits messages into segments as necessary so that
the segments (plus any required header data) fit on the queue.”

Technical implementation of QMMAS is fairly simple:

 On the MQPUT side:

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

QMASS

Segmentation and reassembly by the queue manager:

 This is the simplest scenario, in which one application puts a message to be

retrieved by another. The message might be large: not too large for either

the putting or the getting application to handle in a single buffer, but too large

for the queue manager or a queue on which the message is to be put.

 The only changes necessary for these applications are for the putting

application to authorize the queue manager to perform segmentation if

necessary:

– PMO.Options = (existing options)
– MD.MsgFlags = MQMF_SEGMENTATION_ALLOWED

– memcpy(MD.GroupId, MQGI_NONE, MQ_GROUP_ID_LENGTH)(?)
– MQPUT

 And for the getting application to ask the queue manager to reassemble the

message if it has been segmented:

– GMO.Options = MQGMO_COMPLETE_MSG | (existing options)
– MQGET

6.1

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

QMASS

Segmentation and reassembly by the queue manager (cont.):

 In this simplest scenario, the application must reset the GroupId field to
MQGI_NONE before the MQPUT call, so that the queue manager can generate a
unique group identifier for each message. If this is not done, unrelated
messages can have the same group identifier, which might subsequently lead
to incorrect processing.

But then, the documentation immediately goes on to say (rather cryptically):

 If the MAXMSGL attribute of a queue is to be modified to accommodate
message segmentation, then consider: The minimum message segment
supported on a local queue is 16 bytes.

 For a transmission queue, MAXMSGL must also include the space required
for headers. Consider using a value at least 4000 bytes larger than the
maximum expected length of user data in any message segment that could
be put on a transmission queue.

I have not found anything (not saying it isn’t there) in the documentation that explains what is meant by
“accommodate message segmentation” in regards to queue manager mediate auto-segmentation of
messages. Was not the word ‘only’ used (item 2 in the previous slide) to circumscribe actions required to
enable auto-segmentation? Refer to slide 6.5 for further (re)assurance that the queue manager takes care of
everything.

6.2

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

QMASS

Segmentation and reassembly by the queue manager (cont.):

MQMD.MsgFlags: MQMF_SEGMENTATION_ALLOWED

 This option allows the message to be broken into segments by the queue

manager. If specified for a message that is already a segment, this option

allows the segment to be broken into [even] smaller segments.

MQMF_SEGMENTATION_ALLOWED can be set without either MQMF_SEGMENT

or MQMF_LAST_SEGMENT being set.

 When the queue manager segments a message, the queue manager turns

on the MQMF_SEGMENT flag in the copy of the MQMD that is sent with each

segment, but does not alter the settings of these flags in the MQMD provided

by the application on the MQPUT or MQPUT1 call. For the last segment in the

logical message, the queue manager also turns on the

MQMF_LAST_SEGMENT flag in the MQMD that is sent with the segment.

6.3

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

QMASS

Segmentation and reassembly by the queue manager (cont.):

Interesting…

Take care when putting messages with MQMF_SEGMENTATION_ALLOWED
but without MQPMO_LOGICAL_ORDER (MQPUT only). If the message is:

• Not a segment, and
• Not in a group, and
• Not being forwarded,

[then] the application must reset the GroupId field to MQGI_NONE before each
MQPUT or MQPUT1 call so that the queue manager can generate a unique
group identifier for each message. If this is not done, unrelated messages
can have the same group identifier, which subsequently might lead to
incorrect processing. See the descriptions of the GroupId field and the
MQPMO_LOGICAL_ORDER option for more information about when to reset
the GroupId field.

6.4

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

QMASS

Segmentation and reassembly by the queue manager (cont.):

The queue manager splits messages into segments as necessary so that
the segments (plus any required header data) fit on the queue. However,
there is a lower limit for the size of a segment generated by the queue
manager, and only the last segment created from a message can be smaller
than this limit (the lower limit for the size of an application-generated segment
is one byte). Segments generated by the queue manager might be of unequal
length. The queue-manager processes the message as follows:

• User-defined formats are split on boundaries that are multiples of 16 bytes;
the queue manager does not generate segments that are smaller than 16
bytes (other than the last segment).

• Built-in formats other than MQFMT_STRING are split at points appropriate to
the nature of the data present. However, the queue manager never splits a
message in the middle of an IBM® MQ header structure. This means that a
segment containing a single MQ header structure cannot be split further by
the queue manager, and as a result the minimum possible segment size for
that message is greater than 16 bytes.

6.5

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

QMASS

Segmentation and reassembly by the queue manager (cont.):

The second or later segment generated by the queue manager begins
with one of the following:

 An MQ header structure
 The start of the application message data
 Part of the way through the application message data

• MQFMT_STRING is split without regard for the nature of the data present
(SBCS, DBCS, or mixed SBCS/DBCS). When the string is DBCS or
mixed SBCS/DBCS, this might result in segments that cannot be
converted from one character set to another. The queue manager never
splits MQFMT_STRING messages into segments that are smaller than 16
bytes (other than the last segment).

• The queue manager sets the Format, CodedCharSetId, and Encoding
fields in the MQMD of each segment to describe correctly the data present
at the start of the segment; the format name is either the name of a built-
in format, or the name of a user-defined format.

6.6

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

QMASS

Segmentation and reassembly by the queue manager (cont.):

• The Report field in the MQMD of segments with Offset greater than zero is
modified. For each report type, if the report option is MQRO_*_WITH_DATA,
but the segment cannot contain any of the first 100 bytes of user data (that
is, the data following any IBM® MQ header structures that may be present),
the report option is changed to MQRO_*.

The queue manager follows the above rules, but otherwise splits messages
unpredictably; do not make assumptions about where a message is split.

For persistent messages, the queue manager can perform segmentation only
within a unit of work.

Take special care when converting data messages that might be segmented.
Specifying MQGMO_COMPLETE_MESSAGE insures any conversion
processing is performed on the entire message, not a segment.

Note also that MQGMO_COMPLETE_MESSAGE is the only option that directs
the queue manager to reassemble message segments.

6.7

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

QMASS

Segmentation and reassembly by the queue manager (cont.):

MQGMO.Options: MQGMO_COMPLETE_MSG:

 To use this (MQGET) option, the application must provide a buffer that is big
enough to accommodate the complete message, or specify the
MQGMO_ACCEPT_TRUNCATED_MSG option.

 [[If a message handle is specified in the MQGMO data structure, then on an

MQRC_TRUNCATED_MSG_FAILED error returned on an attempted get of a too-large

segmented message, the MQGET DataLength field is set to the length of the first

segment of the message, NOT the length of the fully reassembled message. If

MQGMO_ACCEPT_TRUNCATED_MSG was set, then under a regular destructive MQGET

the message is removed from the queue, not exactly what we want. Typically, to get

the size of the full message you must do an MQGET with browse which will provide the

message’s full size in the DataLength field whilst leaving the message on the queue.

Then, having appropriately sized the message buffer, a regular destructive MQGET

can be issued. However, none of this ultimately concerns us here because the size

of the message is one of the message properties whose value we’ll query and use to

size our message buffer accordingly.]]

6.8

Capitalware's MQ Technical Conference v2.0.1.5

Message properties are introduced in WebSphere ® MQ version 7.0

(late 2nd quarter 2008) along with other goodies like:

 - embedded pub/sub

 - shared client channels

 - enhanced JMS implementation

 - message selection (by the queue manager)

In a nutshell, using message properties eliminates the need to

programmatically access the MQMD and MQRFH2 headers in order

to manage messages based on information contained in those

headers.

[[To manage messages based on information contained in the

message data payload, preferably you would use a tool like the

IBM® Integration Bus product.]]

IBM® MQ Message Properties

7

Capitalware's MQ Technical Conference v2.0.1.5

Message properties and message length:

IBM® MQ Message Properties (cont.)

8

 The total size of a property is the length of the property name in bytes

plus the length of the property value in (represented) bytes, plus…

 Some control data for the set of properties after the first (or perhaps

only) property is added to the message.

 Paraphrasing the documentation: “On an MQPUT, MQPUT1 or MQGET

call, the length of properties defined on a message do not count toward

the length of the message as far as the queue and the queue manager

are concerned!” [But they likely will count if the message is segmented.]

 Set queue manager attribute MaxPropertiesLength (MAXPROPL)

generously or, perhaps better, set it to NOLIMIT.

 Allocate the message buffer size to be at least 105-110% of the queue

manager’s MaxMsgLength (MAXMSGL) value.

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message properties and message length:

 Use the queue manager attribute MaxPropertiesLength to control the size of
the properties that can flow with any message in a IBM® MQ queue manager.

 In general, when you use MQSETMP to set properties, the size of a property is
the length of the property name in bytes, plus the length of the property value
in bytes as passed into the MQSETMP call. It is possible for the character set
of the property name and the property value to change during transmission of
the message to its destination because these can be converted into Unicode;
in this case the size of the property might change.

 On an MQPUT or MQPUT1 call, properties of the message do not count toward
the length of the message for the queue and the queue manager, but they do
count toward the length of the properties as perceived by the queue manager
(whether or not they were set using the message property MQI calls).

 If the size of the properties exceeds the maximum properties length, the
message is rejected with MQRC_PROPERTIES_TOO_BIG. Because the size of
the properties is dependent on its representation, you should set the
maximum properties length at a gross level.

8.1

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message properties and message length (cont.):

 It is possible for an application to successfully put a message with a buffer
that is larger than the value of MaxMsgLength, if the buffer includes
properties. This is because, even when represented as MQRFH2 elements,
message properties do not count toward the length of the message. The
MQRFH2 header fields add to the properties length only if one or more folders
are contained and every folder in the header contains properties.

 *If one or more folders are contained in the MQRFH2 header and any folder
does not contain properties, [then] the MQRFH2 header fields count toward
the message length instead.

 On an MQGET call, properties of the message do not count toward the length
of the message as far as the queue and the queue manager are concerned.
However, because the properties are counted separately it is possible that
the buffer returned by an MQGET call is larger than the value of the
MaxMsgLength attribute.

8.2

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message properties and message length (cont.):

 Do not have your applications query the value of MaxMsgLength and then
allocate a buffer of this size before calling MQGET; instead, allocate a buffer
you consider large enough. If the MQGET fails, allocate a buffer guided by
the size of the DataLength parameter.

 The DataLength parameter of the MQGET call returns the length in bytes of
the application data and any properties returned in the buffer you have
provided, if a message handle is not specified in the MQGMO structure.

 The Buffer parameter of the MQPUT call contains the application message
data to be sent and any properties represented in the message data
[payload].

8.3

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message properties and message length (cont.):

 When flowing to a queue manager that is earlier than Version 7.0 of the
product, properties of the message, except those in the message descriptor,
count toward the length of the message. Therefore, you should either raise
the value of the MaxMsgLength attribute of channels going to a system earlier
than Version 7.0 as necessary to compensate for the fact that more data
might be sent for each message. Alternatively, you can lower the queue or
queue manager MaxMsgLength, so that the overall level of data being sent
around the system remains the same.

 There is a length limit of 100 MiB for message properties, excluding the
message descriptor or extension for each message.

 The size of a property in its internal representation is the length of the name,
plus the size of its value, plus some control data for the property. There is
also some control data for the set of properties after one property is added to
the message. [The constitution of the 'control data' is ???.]

8.4

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message properties and message length (cont.):

The maximum size of a message’s data payload is determined by:

 The MaxMsgLength attribute of the queue manager.

 The MaxMsgLength attribute of the queue on which you are putting the message.

 The size of any message header added by IBM® MQ (including the dead-letter header,
MQDLH and the distribution list header, MQDH)

The MaxMsgLength attribute of the queue manager holds the [maximum] size of
message that the queue manager can process. This has a default value of 100
MiB for all IBM® MQ products at V6 or higher (Really? See slide 8.8).

The MaxMsgLength attribute of a queue determines the maximum size of
message that you can put on the queue. If you attempt to put a message with
a size larger than the value of this attribute, your MQPUT call fails (RC2030). If
you are putting a message on a remote queue, the maximum size of message
that you can successfully put is determined by the MaxMsgLength attribute of
the remote queue, [the remote queue manager], any intermediate transmission
queues that the message is put on along the route to its destination, and finally
of the channels used [to get there].

8.5

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message properties and message length (cont.):

For an MQPUT operation, the size of the message must be smaller than or
equal to the MaxMsgLength attribute of both the queue and the queue manager.
The values of these attributes are independent, but you are advised to set the
MaxMsgLength of the queue to a value less than or equal to that of the queue
manager.

IBM® MQ adds header information to messages in the following circumstances:

 When you put a message on a remote queue, WebSphere MQ adds a
transmission header structure (MQXQH) to the message. This structure
includes the name of the destination queue and its owning queue manager.

 If IBM® MQ cannot deliver a message to a remote queue, it attempts to put
the message on the dead-letter (undelivered-message) queue. It adds an
MQDLH structure to the message. This structure includes the name of the
destination queue and the reason that the message was put on the dead-
letter queue.

8.6

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message properties and message length (cont.):

 If you want to send a message to multiple destination queues, IBM® MQ adds
an MQDH header to the message. This describes the data that is present in a
message, belonging to a distribution list, on a transmission queue. Consider
this when choosing an optimum value for the maximum message length.

 If the message is a segment or a message in a group, IBM® MQ might add an
MQMDE (but when and why is obfuscated).

If your messages are of the maximum size allowed for these queues, the
addition of these headers means that the put operation fails because the
messages are now too big. To reduce the possibility of the put operations
failing:

1. Make the size of your messages smaller than the MaxMsgLength attribute of the
transmission and dead-letter queues. Allow at least the value of the
MQ_MSG_HEADER_LENGTH constant [4000] (more for large distribution lists).

2. Make sure that the MaxMsgLength attribute of the dead-letter queue is set to the
same as the MaxMsgLength of the queue manager that owns the dead-letter
queue.

8.7

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message properties and message length (cont.):

The documented claim (see slide 8.5) that the default MAXMSGL value for a
queue manager is 100 MiB. Really? Below is a just-created IBM® MQ queue
manager “XXX". Doesn’t look like 100 MiB.

8.8

Capitalware's MQ Technical Conference v2.0.1.5

Message property names:

IBM® MQ Message Properties (cont.)

9

 Must be a character string not exceeding MQ_MAX_PROPERTY_NAME_LENGTH

(4095) characters in length.

 Must follow [naming] rules defined by the Java™ Language Specification

for Java Identifiers.

 Must NOT contain:
 Embedded nulls (although technically permitted)*

 White space characters.

 Can be grouped using name subcomponents separated by a period (.), but…

 The following prefixes are reserved for use by the product:

 mcd

 jms

 usr

 mq

 sib

 wmq

 Root

 Body

 Properties

 Use property synonyms instead.

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message property names:

 A property name is a character string. Certain restrictions apply to its length
and the set of characters that can be used.

 A property name is a case-sensitive character string, limited to +4095
characters unless otherwise restricted by the context. This limit is contained
in the MQ_MAX_PROPERTY_NAME_LENGTH constant.

 If you exceed this maximum length when using a message property MQI call,
the call fails with reason code MQRC_PROPERTY_NAME_LENGTH_ERR.

 Because there is no maximum property name length in JMS, it is possible for
a JMS application to set a valid JMS property name that is not a valid IBM®

MQ property name when stored in an MQRFH2 structure.

 In this case, when parsed, only the first 4095 characters of the property name
are used; all following characters are truncated. This could cause an
application using selectors to fail to match a selection string, or to match a
string when not expecting to, since more than one property might truncate to
the same name. When a property name is truncated, IBM® MQ issues an
error log message.

9.1

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message property names (cont.):

 All property names must follow the rules defined by the Java™ Language
Specification for Java Identifiers, with the exception that Unicode character
U+002E (.) is permitted as part of the name - but not the start. The rules for
Java Identifiers equate to those contained in the JMS specification for
property names.

 White space characters and comparison operators are prohibited. Embedded
nulls* are allowed in a property name but not recommended. If you use
embedded nulls, this prevents the use of the MQVS_NULL_TERMINATED
constant when used with the MQCHARV structure to specify variable length
strings.

 Keep property names simple because applications can select messages
based on the property names and the conversion between the character set
of the name and of the selector might cause the selection to fail
unexpectedly.

9.2

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

 IBM® MQ property names use
character U+002E (.) for logical
grouping of properties. This divides
up the namespace for properties.
Properties with the following prefixes,
in any mixture of lowercase or
uppercase are reserved for use by
the product:

 mcd

 jms

 usr

 mq

 sib

 wmq

 Root

 Body

 Properties

 A good way to avoid name clashes is
to ensure that all applications prefix
their message properties with their
Internet domain name. For example,
if you are developing an application
using domain name ourcompany.com,
you could name all properties with
the prefix com.ourcompany. This
naming convention also allows for
easy selection of properties; for
example, an application can inquire
on all message properties starting
com.ourcompany.%.

9.3

Message property names (cont.):

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Property name restrictions:

 When you name a property, you must observe certain rules. The following
restrictions apply to property names:

1. A property must not begin with the following strings:

 "JMS" - reserved for use by IBM® MQ classes for JMS.

 "usr.JMS" - not valid.

 The only exceptions are the following properties providing synonyms for JMS properties:

 Property Synonym for

– JMSCorrelationID Root .MQMD.CorrelId or jms.Cid

– JMSDeliveryMode Root .MQMD.Persistence or jms.Dlv

– JMSDestination jms.Dst

– JMSExpiration Root .MQMD.Expiry or jms.Exp

– JMSMessageID Root .MQMD.MsgId

– JMSPriority Root .MQMD.Priority or jms.Pri

– JMSRedelivered Root .MQMD.BackoutCount

– JMSReplyTo Root .MQMD.ReplyToQ or Root .MQMD.ReplyToQMgr or jms.Rto

– JMSTimestamp Root .MQMD.PutDate or Root .MQMD.PutTime or jms.Tms

9.4

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

 Property Synonym for

– JMSType mcd.Type or mcd.Set or mcd.Fmt

– JMSXAppID Root .MQMD.PutApplName

– JMSXDeliveryCount Root .MQMD.BackoutCount

– JMSXGroupID Root .MQMD.GroupId or jms.Gid

– JMSXGroupSeq Root .MQMD.MsgSeqNumber or jms.Seq

– JMSXUserID Root .MQMD.UserIdentifier

These synonyms allow an MQI application to access JMS properties in a similar fashion to IBM®

MQ classes for JMS client application. Of these properties, only JMSCorrelationID, JMSReplyTo,

JMSType, JMSXGroupID, and JMSXGroupSeq can be set using the MQI.

Note that the JMS_IBM_* properties available from within IBM® MQ classes for JMS are not

available using the MQI. The fields that the JMS_IBM_* properties reference can be accessed in

other ways by MQI applications.

2. A property must not be called, in any mixture of lower or uppercase, "NULL", "TRUE", "FALSE",
"NOT", "AND", "OR", "BETWEEN", "LIKE", "IN", "IS" and "ESCAPE". These are the names of SQL
keywords used in selection strings.

3. A property name beginning with "mq " in any mixture of lowercase or uppercase and not
beginning "mq_usr" can contain only one "." character (U+002E). Multiple "." characters are
not allowed in properties with those prefixes.

 9.5

Property name restrictions (cont.):

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

4. Two "." characters must contain other characters in between; you cannot have an empty
point in the hierarchy. Similarly a property name cannot end in a "." character.

5. If an application sets the property "a.b" and then the property "a.b.c", it is unclear whether in
the hierarchy "b" contains a value or another logical grouping. Such a hierarchy is "mixed
content" and this is not supported. Setting a property that causes mixed content is not
allowed.

 These restrictions are enforced by the validation mechanism as follows:

 Property names are validated when setting a property using the MQSETMP – set message

property call, if validation was requested when the message handle was created. If an

attempt to validate a property is undertaken and fails due to an error in the specification of the

property name, the completion code is MQCC_FAILED with reason:

o MQRC_PROPERTY_NAME_ERROR for reasons 1-4 [above].

o MQRC_MIXED_CONTENT_NOT_ALLOWED for reason 5.

 The names of properties specified directly as MQRFH2 elements are not guaranteed to be

validated by the MQPUT call.

9.6

Property name restrictions (cont.):

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message descriptor fields as properties:

 Most message descriptor fields can be treated as properties. The property
name is constructed by adding a prefix to the message descriptor field's
name.

 If an MQI application wants to identify a message property contained in a
message descriptor field, for example, in a selector string or using the
message property APIs, use the following syntax:

 Property name Message descriptor field

– Root.MQMD.<Field> <Field>

 Specify <Field> with the same case as for the MQMD structure fields in the
'C' language declaration. For example, the property name
'Root.MQMD.AccountingToken' accesses the 'AccountingToken' field of the
message descriptor.

 The StrucId and Version fields of the message descriptor are not accessible
using the syntax shown [here].

9.7

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

Message descriptor fields as properties (cont.):

 Message descriptor fields are never represented in an MQRFH2 header as [it
is] for other properties.

 If the message data starts with an MQMDE that is honored by the queue
manager, the MQMDE fields can be accessed using the Root.MQMD.<Field>
notation described. In this case the MQMDE fields are treated logically as a
part of the MQMD from a properties perspective.

9.8

Capitalware's MQ Technical Conference v2.0.1.5

Message property values:

IBM® MQ Message Properties (cont.)

10

 Can be a boolean, a byte string, a character string, an integer or a

floating-point number.

 Must be one of the following data types:

 MQBOOL

 MQBYTE[]

 MQCHAR[]

 MQFLOAT32

 MQFLOAT64

 MQINT8

 MQINT16

 MQINT32

 MQINT64

 Can be undefined – a NULL property.

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Properties

 A property can be a boolean, a byte
string, a character string, an integer
or a floating-point number. The
property can store any valid value in
the range of the data type unless
otherwise restricted by the context.

 The data type of a property value
must be one of the following values:

 MQBOOL

 MQBYTE[]

 MQCHAR[]

 MQFLOAT32

 MQFLOAT64

 MQINT8

 MQINT16

 MQINT32

 MQINT64

 A property can exist but have no
defined value; it is a null property. A
null property is different from a byte
property (MQBYTE[]) or character
string property (MQCHAR[]) in that it
has a defined but empty value, that
is, one with a zero-length value.

 Byte string is not a valid property data
type in JMS or XMS. You are advised
not to use byte string properties in the
<usr> folder.

10.1

Message property data types and values:

Capitalware's MQ Technical Conference v2.0.1.5

A message selector is a variable-length SQL query string defined

within a MQCHARV data structure which is used by an application to

register its interest (with the queue manager) in only those

messages having properties that satisfy the SQL query.

IBM® MQ Message Selectors

11

 A message selector is supplied via the SelectionString field of the

MQOD or MQSD data structure provided in a MQOPEN or MQSUB

MQI function call.

 MQOD ObjectType field must be MQOT_Q.

 MQOPEN Options field must be either MQOO_BROWSE or

MQOO_INPUT_*.

 Selector string is fixed while the queue / subscription object

remains open. The object handle must be closed (MQCLOSE)

and re-opened in order to specify a new selection string.

Capitalware's MQ Technical Conference v2.0.1.5

Message selector syntax and behavior can be complex depending

on the query. There is no N th generation SQL optimization being

performed by the queue manager. So, in general…

IBM® MQ Message Selectors (cont.)

12

 The deeper the queue, the simpler the SQL query.

 Parenthesize expressions.

 Evaluation precedence is left to right – expressions most

likely to resolve selection should lead the SQL query.

Selectors are implemented solely by the message retrieving application.

Imagine… a world where selectors could be defined in the messaging

infrastructure itself by having alias queue objects provide an associated

selector attribute value to its base (local) queue. Intrigued??

 You are invited to re-submit RFE #41564 (declined 2015.0421) at:

https://www.ibm.com/developerworks/rfe/execute?use_case=viewRfe&CR_ID=41564

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Selectors

Selection behavior:

 The fields in an MQMDE structure are considered to be the message
properties for the corresponding message descriptor properties if the MQMD:

 Has format MQFMT_MD_EXTENSION

 Is immediately followed by a valid MQMDE structure
 Is version one or contains the default version two fields only

 It is possible for a selection string to resolve to either TRUE or FALSE before
any matching against message properties takes place. For example, it might
be the case if the selection string is set to "TRUE <> FALSE". Such early
evaluation is guaranteed to take place only when there are no message
property references in the selection string.

 If a selection string resolves to TRUE before any message properties are
considered, all messages published to the topic subscribed to by the
consumer are delivered. If a selection string resolves to FALSE before any
message properties are considered, a MQRC_SELECTOR_ALWAYS_FALSE
reason code, and completion code MQCC_FAILED are returned on the
function call that presented the selector.

12.1

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Selectors

Selection behavior (cont.):

 Even if a message contains no message properties (other than header
properties) then it can still be eligible for selection. If a selection string
references a message property that does not exist, this property is assumed
to have the value of NULL or 'Unknown'.

 For example, a message might still satisfy a selection string like 'Color IS

NULL', where 'Color' does not exist as a message property in the message.

 Selection can be performed only on the properties that are associated with a
message, not the message [data payload] itself, unless an extended
message selection provider is available. Selection can be performed on the
message payload only if an extended message selection provider is
available.

 Each message property has a type associated with it. When you perform a
selection, you must ensure that the values used in expressions to test
message properties are of the correct type. If a type mismatch occurs, the
expression in question resolves to FALSE.

12.2

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Selectors

Selection behavior (cont.):

 It is your responsibility to ensure that the selection string and message
properties use compatible types.

 Selection criteria continue to be applied on behalf of inactive durable
subscribers, so that only messages that match the selection string that was
originally supplied are kept.

 Selection strings are non-alterable when a durable subscription is resumed
with alter (MQSO_ALTER). If a different selection string is presented when a
durable subscriber resumes activity, then MQRC_SELECTOR_NOT_ALTERABLE
is returned to the application.

 Applications receive a return code of MQRC_NO_MSG_AVAILABLE if there is no
message on a queue that meets the selection criteria.

 If an application has specified a selection string containing property values,
then only those messages that contain matching properties are eligible for
selection. For example, a subscriber specifies a selection string of "a = 3" and
a message is published containing no properties, or properties where 'a' does
not exist or is not equal to 3. The subscriber does not receive that message to
its destination queue.

 12.3

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Selectors

Messaging performance:

 Selecting messages from a queue requires IBM® MQ to sequentially inspect
each message on the queue. Messages are inspected until a message is
found that matches the selection criteria or there are no more messages to
examine. Therefore, messaging performance suffers if message selection is
used on deep queues.

 To optimize message selection on deep queues when selection is based on
JMSCorrelationID or JMSMessageID, use a selection string of the form
JMSCorrelationID = ... or JMSMessageID = ... and reference only the one
property.

 This method offers a significant improvement in performance for selection on
JMSCorrelationID and offers a marginal performance improvement for
JMSMessageID.

12.4

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Selectors

Using complex selectors:

 Selectors can contain many components, for example:

– a and b or c and d or e and f or g and h or i and j ... or y and z

 Use of such complex selectors can have serious performance implications and
excessive resource requirements. As such, IBM® MQ will protect the system
by failing to process overly complex selectors that could result in a system
resource shortage.

 Protection can occur on selection strings that contain more than 100 tests, or
when IBM® MQ detects that the limit on the size of the operating system stack
is being approached. You should thoroughly try and test the use of selection
strings with many components, on the appropriate platforms, to ensure that
the protection limits are not reached.

 The performance and complexity of selectors can be improved by simplifying
them using additional parenthesis to combine components. For example:

– (a and b or c and d) or (e and f or g and h) or (i and j) ...

12.5

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Selectors

Selection string rules and restrictions:

 The following is a list of rules about how selection strings are interpreted:

1. Message selection for publish/subscribe messaging occurs on the message as

sent by the publisher.

2. Equivalence is tested using a single equals character; for example, "a = b" is

correct, whereas "a == b" is incorrect.

3. An operator used by many programming languages to represent "not equal to" is

'!='. This representation is not a valid synonym for '<>'; for example, "a <> b" is

valid, whereas "a != b" is not valid.

4. Single quotation marks are recognized only if the ' (U+0027) character is used.

Similarly, double quotation marks, valid only when used to enclose byte strings,

must use the " (U+0022) character.

5. The symbols '&', '&&', '|' and '||' are not synonyms for logical conjunction /

disjunction; for example, "a && b" must be specified as "a AND b".

6. The wildcard characters '*' and '?' are not synonyms for '%' and '_'.

12.6

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

IBM® MQ Message Selectors

Selection string rules and restrictions (cont.):

 Rules about how selection strings are interpreted (cont.):

7. Selectors containing compound expressions such as "20 < b < 30" are not valid.

The parser evaluates operators that have the same precedence from left to right.

The example would therefore become "(20 < b) < 30", which does not make

sense. Instead the expression must be written as "(b > 20) AND (b < 30)".

8. Byte strings must be enclosed in double quotation marks; if single quotation marks

are used, the byte string is taken to be a string literal. The number of characters

(not the number that the characters represent) following an '0x' must be a multiple

of two.

9. The keyword 'IS' is not a synonym for the equals character. Thus the selection

strings "a IS 3" and "b IS 'red'" are not valid. The 'IS' keyword exists only to

support 'IS NULL' and 'IS NOT NULL' cases.

 The selector string is fixed while the queue / subscription object remains open.
The object handle must be closed (MQCLOSE) and re-opened in order to
specify a new selection string. Alternatively, instantiate multiple object
handles to a queue, each with its own selector string (or perhaps none).

12.7

Capitalware's MQ Technical Conference v2.0.1.5

We’re not doing anything fancy here –

 Just standard auto-segmentation of messages > 4 MiB.

Consider: A simple two clustered queue manager setup.

Re-enacting the Messaging Infrastructure CS

13

Cluster Queue Manager 1 (QM1)
Full Cluster Repository (QMC1)

Cluster Queue Manager 2 (QM2)
Full Cluster Repository (QMC1)

 Alias Queue: AQ1
 Base Queue: ACQ1@QM2

 Cluster Transmit Queue

 Alias Cluster Queue: QMC1:ACQ1
 Base Queue: LQ1

 Local Queue: LQ1
 Alias Queue: AQ2
 Base Queue: LQ1

Message Putting Application

Cluster

Channels

Message Getting Application

Capitalware's MQ Technical Conference v2.0.1.5

All default MQ system objects are unaltered.
All defined MQ objects take the default maximum message length.

Re-enacting the Messaging Infrastructure CS (cont.)

14

 The message originating queue manager MAXMSGL attribute set to 4 MiB (Dflt).

 The SYSTEM.CLUSTER.TRANSMISSION.QUEUE MAXMSGL attribute set to 4 MiB (Dflt).

 Destination queue manager MAXMSGL attribute set to 4 MiB (Dflt).

 Destination queue MAXMSGL attribute set to 4 MiB (Dflt).

 Initialize message property and handle objects & data structures:

 All cluster receiver / sender channels MAXMSGL attribute set to 0 (4 MiB).

 Using a message handle in place of a MQMD.

MQHMSG MsgHandle;
MQCMHO CrtMsgHndOpts = { MQCMHO_DEFAULT };
MQDMHO DltMsgHndOpts = { MQDMHO_DEFAULT };
MQSMPO SetMsgPrpOpts = { MQSMPO_DEFAULT };
MQPD MsgPropDesc = { MQPD_DEFAULT };

Setup of the message putting application…

Capitalware's MQ Technical Conference v2.0.1.5

Re-enacting the Messaging Infrastructure CS (cont.)

15

 Initialize message property and handle objects & data structures:

 Instantiate object handles:

CrtMsgHndOpts.Options = MQCMHO_DEFAULT_VALIDATION;
DltMsgHndOpts.Options = MQDMHO_NONE;

SetMsgPrpOpts.Options = MQSMPO_SET_FIRST;

MsgPropDesc.CopyOptions = MQCOPY_NONE*;

MsgPropType = MQTYPE_STRING;
PutMsgOpts.Action = MQACTP_NEW;

Setup of the message putting application… (cont.)

 MQCONN (QMgrName, &QMgrHandle);
 MQCRTMH(QMgrHandle, CrtMsgHndOpts, MsgHandle);

PutMsgOpts.Options = MQPMO_NEW_MSG_ID | MQPMO_NEW_CORREL_ID |
 MQPMO_NO_SYNCPOINT | MQPMO_SYNC_RESPONSE |
 MQPMO_FAIL_IF_QUIESCING;

Capitalware's MQ Technical Conference v2.0.1.5

Re-enacting the Messaging Infrastructure CS (cont.)

16

 Four message properties are defined:

MQSETMP(QMgrHandle, MsgHandle, SetMsgPrpOpts, MsgLength.Name,
 MsgPropDesc, MsgPropType, MsgLength.Length, MsgLength.Value);

 Messages are put using the MQI function call MQPUT1.**

Setup of the message putting application… (cont.)

 FileName: Name of the file whose contents comprise the data payload

 MsgLength: Sizing buffers & segmented message group logic

 MsgGrpId: Associate segmented message with its 'reference' message

 MsgProps: Multiple additional message properties stand-in

MQSETMP(QMgrHandle, MsgHandle, SetMsgPrpOpts, MsgGrpId.Name,
 MsgPropDesc, MsgPropType, MsgGrpId.Length, MsgGrpId.Value);

MQSETMP(QMgrHandle, MsgHandle, SetMsgPrpOpts, MsgProps.Name,
 MsgPropDesc, MsgPropType, MsgProps.Length, MsgProps.Value);

MQSETMP(QMgrHandle, MsgHandle, SetMsgPrpOpts, FileName.Name,
 MsgPropDesc, MsgPropType, FileName.Length, FileName.Value);

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

Setup of the message putting application

Message property data components are defined by a data structure thusly:

struct tagMessageProperty {
 MQCHARV Name;
 PMQCHAR Value;
 MQLONG Length;
 MQLONG MaxLength;
};

/**
For reference, an MQCHARV data structure is defined by MQ thusly:

typedef struct tagMQCHARV MQCHARV;

struct tagMQCHARV {
 MQPTR VSPtr; /* Address of variable length string */
 MQLONG VSOffset; /* Offset of variable length string */
 MQLONG VSBufSize; /* Size of buffer */
 MQLONG VSLength; /* Length of variable length string */
 MQLONG VSCCSID; /* CCSID of variable length string */
};
**/

*This is the only non-default attribute value of the message property descriptor being set; all
other attribute values are defaulted (MQPD.Context = MQPD_NO_CONTEXT, MQPD.Options = MQPD_NONE,
MQPD.Support = MQPD_SUPPORT_OPTIONAL).

**MQPUT1 is used to replicate the original messaging application.

16.1

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

Setup of the message putting application

An array of message property data structures would normally be used but for clarity (and since
there are only four message properties), in the re-enactment we will define each message
property separately, thusly:

typedef struct tagMessageProperty FileName = {
 { "FileName", 0, MQVS_USE_VSLENGTH, MQVS_NULL_TERMINATED, MQCCSI_APPL },
 NULL,
 0,
 FileNameMaxLen
};

typedef struct tagMessageProperty MsgLength = {
 { "MessageLength", 0, MQVS_USE_VSLENGTH, MQVS_NULL_TERMINATED, MQCCSI_APPL },
 NULL,
 0,
 MsgLengthMaxLen
};

typedef struct tagMessageProperty MsgGrpId = {
 { "MessageGroupId", 0, MQVS_USE_VSLENGTH, MQVS_NULL_TERMINATED, MQCCSI_APPL },
 NULL,
 0,
 MsgGrpIdMaxLen
};

typedef struct tagMessageProperty MsgProps = {
 { "MessageProps", 0, MQVS_USE_VSLENGTH, MQVS_NULL_TERMINATED, MQCCSI_APPL },
 NULL,
 0,
 KIB
};

Solution specific code continues on slide 30.1.

16.2

Capitalware's MQ Technical Conference v2.0.1.5

Re-enacting the Messaging Infrastructure CS (cont.)

17

 The message getting application must perform message property

inquiries using the MQINQMP MQI function call.

Setup of the message getting application…

MQHMSG MsgHandle;

MQCMHO CrtMsgHndOpts = { MQCMHO_DEFAULT };
MQDMHO DltMsgHndOpts = { MQDMHO_DEFAULT };

MQIMPO InqMsgPrpOpts = { MQIMPO_DEFAULT };

MQPD MsgPropDesc = { MQPD_DEFAULT };

 Initialize message property and handle objects & data structures:

 Initialize message property inquiry data structures:

InqMsgPrpOpts.Options = MQIMPO_CONVERT_VALUE |
 MQIMPO_CONVERT_TYPE |
 MQIMPO_INQ_FIRST;

Capitalware's MQ Technical Conference v2.0.1.5

Re-enacting the Messaging Infrastructure CS (cont.)

18

 Initialize message property and handle objects options:

 Instantiate object handles:

CrtMsgHndOpts.Options = MQCMHO_DEFAULT_VALIDATION;
DltMsgHndOpts.Options = MQDMHO_NONE;

MsgPropDesc.CopyOptions = MQCOPY_NONE;

MsgPropType = MQTYPE_STRING;

Setup of the message getting application… (cont.)

 MQCONN (QMgrName, &QMgrHandle);
 MQCRTMH(QMgrHandle, CrtMsgHndOpts, MsgHandle);
 MQOPEN (QMgrHandle, &QueObjDesc,
 QueOpenOpts, &QueObjHnd);

GetMsgOpts.Options = MQGMO_WAIT | MQGMO_CONVERT |
 MQGMO_NO_SYNCPOINT |
 MQGMO_PROPERTIES_IN_HANDLE |
 MQGMO_COMPLETE_MESSAGE |
 MQGMO_FAIL_IF_QUIESCING;

Capitalware's MQ Technical Conference v2.0.1.5

Re-enacting the Messaging Infrastructure CS (cont.)

19

Running the re-enactment:

 Several text files of varying size are read by the getting application

which packages the file’s contents into an MQ message’s data payload.

 The assembled message is put onto an alias queue whose base queue

is a cluster alias queue defined on the destination queue manager. A

MQMD is provided as the MQPUT’s message descriptor argument.

What is observed:

1. The queue manager correctly determines the precise conditions under

which a message must be segmented.

2. The queue manager converts the message’s properties into a MQRFH2

data structure which it prepends onto the first message segment.

3. But-- the queue manager sizes the first message segment precisely at

its MAXMSGL value of 4 MiB. Prepending the MQRFH2 data structure to

the first message segment causes its size to now exceed 4 MiB!

Capitalware's MQ Technical Conference v2.0.1.5

Re-enacting the Messaging Infrastructure CS (cont.)

20

Running the re-enactment (cont.):

4. The now too-large message segment is successfully put and takes up

residence on the queue manager’s cluster transmission queue.

5. The destination queue manager’s cluster receiver channel MCA fails in

its attempt to retrieve the first message segment.

7. The ‘fat’ message segment plugs the message-originating queue

manager’s cluster transmission queue and no subsequently queued-up

messages can be transmitted-- technically, it’s a “poison” message.

8. At a minimum, the offending message segments must be manually

deleted from the cluster transmission queue in order to ‘free’ messages

queued up after the auto-segmentation event.

6. The cluster receiver channel ends abnormally, throwing:

 AMQ9259: Connection timed out from host '192.168.1.121'.

Then, when typically a MQMD is provided as the MQPUT call’s message descriptor

argument, the following is observed:

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

Running the re-enactment

Error thrown by the destination queue manager (QM2):
===
09/21/15 09:36:44 PM - Process(5014.1) User(mqm) Program(amqzxma0)
 Host(sol10vm1) Installation(Installation1)
 VRMF(7.5.0.4) QMgr(QM2)

The select() [TIMEOUT] 180 seconds call timed out. Check to see why data was
not received in the expected time. Correct the problem. Reconnect the channel,
or wait for a retrying channel to reconnect itself.
----- amqccita.c : 4240 ---
09/21/15 05:06:57 PM - Process(5028.51) User(mqm) Program(amqrmppa)
 Host(sol10vm1) Installation(Installation1)
 VRMF(7.5.0.4) QMgr(QM2)

AMQ9999: Channel 'TO_QM2' to host 'genesis (192.168.1.121)' ended abnormally.

EXPLANATION:
The channel program running under process ID 5028 for channel 'TO_QM2' ended
abnormally. The host name is 'genesis (192.168.1.121)'; in some cases the host
name cannot be determined and so is shown as '????'.
===

*WARNING: If you use MQ Explorer to nuke the cluster transmission queue’s messages (it’s a nuke because all

messages get whacked, not just the offending message), it is possible for some of the poison message’s legal segments

to be transmitted to their destination queue where they likely will languish forever or until they are manually removed

from the destination queue.

20.1

Capitalware's MQ Technical Conference v2.0.1.5

What Didn’t Work (as Expected)?

21

1. The message-originating queue manager correctly determines that the
total size of the message plus its properties will exceed the queue
manager MAXMSGL attribute value. This is the only action that worked.

3. This causes the first message segment to exceed the MAXMSGL value
by an amount equal to the size of the MQRHF2 header. Amazingly, if a
message header descriptor (MQMD) is provided to the MQPUT call, the
message segment is successfully placed onto the transmission queue.

4. The message retrieval process executed (at the tcp/ip socket layer) by
the receiver channel’s MCA fails continuously and ultimately times out
after three minutes (180 seconds) with the destination queue manager
throwing the errors shown in the previous slide.

2. But… when the queue manager calculates the location in the message’s
data payload where the first segment is to be cleaved, the QM fails to
take into account the length of the message’s properties which are
subsequently assembled into an MQRHF2 header that is prepended to
the data payload of the first message segment.

Capitalware's MQ Technical Conference v2.0.1.5

What Didn’t Work (as Expected)? (cont.)

22

8. If a null message descriptor is provided to the MQPUT call (instead of a
MQMD), then the message put does fail, throwing either a RC2030 error
(message too large for queue) or a RC2031 error (message too large for queue

manager) even though MQMF_SEGMENTATION_ALLOWED was specified!

6. The most notorious failure in this scenario is the message-originating
queue manager’s failure to recognize the message segment is too large
and putting it on the transmission queue anyway. This behavior may be
ameliorated by setting the MQPUT message descriptor parameter to NULL.

5. The error reported in the destination queue manager’s (DQM) log is
vague.* No FDC files are generated by either the originating or
destination queue managers. Running a trace is the only way to expose
the true nature of the problem.

7. Failure of the DQM SCRC’s MCA to retrieve the first message segment
from the message-originating queue manager’s SCTQ results in the
DQM’s SCRC being stopped. Furthermore, it is not possible to restart the
channel until the offending message segment is removed from the SCTQ.

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

Running the re-enactment

*Error thrown by the originating queue manager (QM1) is even more vague:
===
9/21/2015 17:12:44 - Process(13952.11) User(GregBrown) Program(amqrmppa.exe)
 Host(GENESIS) Installation(Installation1)
 VRMF(7.5.0.4) QMgr(QM1)

AMQ9206: Error sending data to host 192.168.1.172 (192.168.1.172)(1422).

EXPLANATION:
An error occurred sending data over TCP/IP to 192.168.1.172
(192.168.1.172)(1422). This may be due to a communications failure.
ACTION:
The return code from the TCP/IP(send) call was 10053 X('2745'). Record these
values and tell your systems administrator.
----- amqccita.c : 3024 ---
9/21/2015 17:12:44 - Process(13952.11) User(GregBrown) Program(amqrmppa.exe)
 Host(GENESIS) Installation(Installation1)
 VRMF(7.5.0.4) QMgr(QM1)

AMQ9999: Channel 'TO_QM2' to host '192.168.1.172 (1422)' ended abnormally.

EXPLANATION:
The channel program running under process ID 13952(12748) for channel 'TO_QM2'
ended abnormally. The host name is '192.168.1.172 (1422)'; in some cases the
host name cannot be determined and so is shown as '????'.
===

**Yes, the SCTQ's USEDLQ attribute value is set to 'YES' (the default).

22.1

Capitalware's MQ Technical Conference v2.0.1.5

What Other Scenarios Were Tried?

23

5. Set the OQM MAXMSGL at default 4194304:
i. Set the OQM SCTQ MAXMSGL to 4200000
ii. Set the OQM DCSC MAXMSGL to 4200000
iii. Set the DQM DCRC MAXMSGL to 4200000
iv. Set the DQM and destination queue MAXMSGL to 4200000

 Result: Failure!

1. Set the originating queue manager’s (OQM) defined cluster sender
channel (DCSC) MAXMSGL and the destination queue manager’s (DQM)
defined cluster receiver channel (DCRC) MAXMSGL to 4200000:

 Result: Failure [This was the official 'work-around' given by IBM.]

2. Set the OQM SCTQ MAXMSGL to 4200000:

 Result: Failure

3. Set the DQM MAXMSGL to 4200000:

 Result: Failure

4. Reset all of the altered MAXMSGL attributes back to 4194304 and set

the OQM MAXMSGL to 4100000:

 Result: Failure

Capitalware's MQ Technical Conference v2.0.1.5

Zombie Messages Live to Raise Hell!

24

Let’s go up to the lab and check out what’s on the slab.

Capitalware's MQ Technical Conference v2.0.1.5

A Technical Implementation Solution Pattern

25

Problem Statement: Given that queue manager mediated auto-
segmentation of large messages does not work with messages that
have properties defined on them, what solution options are there?

1. Promulgate an IT governance directive prohibiting the use of the IBM®

MQ message property feature anywhere in the application domain.

2. Promulgate an IT governance directive requiring the MAXMSGL attribute
value for all IBM® MQ objects involved in enabling messaging services
in the application domain be set to 1 0 4 8 5 7 6 0 0 bytes.

3. Promulgate an IT governance directive requiring developers of message
enabled applications to adopt a technical implementation convention
whose goal is to render large messages with properties defined on them
transparent to a regrettably fickle messaging infrastructure.

The choice naturally will be directed by any number of factors. Typically the
goal is to provide IT the most flexible options with minimal organizational
impact. The solution presented here ultimately is just another option that,
like all other options, has its own advantages and disadvantages.

Capitalware's MQ Technical Conference v2.0.1.5

A Technical Implementation Solution Pattern (cont.)

26

Main Advantages of the solution pattern:

1. Solution implementation is (almost) completely transparent to IT
operations and administrative domains.

2. Solution implementation is fairly straight-forward for the developer.

3. Disadvantage #2 can be easily ameliorated by lowering the solution’s
message segmentation logic threshold.

Main Disadvantage of the solution pattern:

1. Theoretically, in order to assure that the solution would work with any
configuration of an IBM® MQ messaging infrastructure, the MAXMSGL
attribute value of every participating IBM® MQ object in the message
transmission path would have to be known in advance by the putting
application. This is, at best, a difficult proposition. Consequently…

2. A significant assumption is made: The message segmentation threshold
in the putting application that triggers the solution logic is not larger than
the smallest MAXMSGL value of any IBM® MQ object encountered in the
course of message transmission.

Capitalware's MQ Technical Conference v2.0.1.5

A Technical Implementation Solution Pattern (cont.)

27

 A corollary assumption of acceptably low risk is that all IBM® MQ objects
comprising a messaging infrastructure have a MAXMSGL value no lower
than their default value [this may call for its own IT governance directive].
To the extent this assumption is (quite likely) true, then 4194304 bytes (4
MiB) is the magic threshold value above which the solution should not go.

 The solution logic threshold value is calculated as the sum of the length
of the message data payload plus the collective length of the message’s
properties. If this value exceeds 4 MiB, then the solution logic is invoked.

Keep in mind:

 The solution logic is functionally benign when invoked in cases where
auto-segmentation of a message does not in fact occur. This will happen
on occasion where the total length of any particular message’s properties
is provided by a universally applicable maximum properties length value
but that, when added to the length of a message’s data payload, results
in a calculated threshold value that is greater than 4MiB when in fact the
true threshold value is less than 4 MiB (the true collective length of a message’s

properties must always be <= the maximum properties length value).

Capitalware's MQ Technical Conference v2.0.1.5

A Technical Implementation Solution Pattern (cont.)

28

Message putting application pattern structure:

 Assemble and set the MessageSize and FileName message properties

 Application initialization

 Loop until exit condition:

 Receive a file name
• Acquire file size

• Allocate message buffer memory

 If the message data payload length (the file size) plus the max properties

length value does not exceed 4 MiB, then
• Put the message

 Else
1) Assemble and set the MessageGroupId message property

2) Set variables supporting putting of a message that will be auto-segmented

3) Put the (reference) message

4) Put the (data) message

5) Reset variables set in step 2

 Continue

For the purpose of illustrating the technical implementation pattern, the demonstration
application employs a simple process loop pattern:

Capitalware's MQ Technical Conference v2.0.1.5

A Technical Implementation Solution Pattern (cont.)

29

Is Message Length
> 4MiB?

Process Small
Message With

Properties

Put Message
Application Pre-

Processing

Solution Enhancements to the Message Putting Application

NO

Generate a Unique Group Id
and Assign It to the

'MsgGrpIdMP' Message
Property; Assign Message Size

to the 'MsgLengthMP'
Message Property

Y
ES

Put the First
'Reference'

Message with No
Data Payload

Put the Second
Message with the

Data Payload and Use
the MQMD

Set MQ Object Attribute Values
for Segmented Message

MQMD.MsgFlags
MQMD.GroupId

PMO.OriginalMsgHandle

Reset MQ Object Attribute Values for
Non-Segmented Message

MQMD.GroupId
PMO.OriginalMsgHandle

Process Next Message
Cycle

Capitalware's MQ Technical Conference v2.0.1.5

A Technical Implementation Solution Pattern (cont.)

30

 Two message properties that absolutely must be included in a segmented
message’s reference message properties pool are:

1. The total size of the segmented message to come (MP likely already there)
2. The segmented message’s assigned MQMD.GroupId (MP likely not already there)

Code enhancements to the message putting application:

 A more precise calculation of the length of a message’s properties:

 Calculate a constant whose value is the size of a declared but uninitialized
message property data structure times the number of occurrences, and add to
it the sum of the lengths of all message property names.

 For every message, sum the length of all message property values and add
that to the constant previously calculated. Then consider guidance provided in
slides 6.2, 8.4 and 8.7 (among others), and add an appropriate fudge factor.

 Be aware of potential issues with DBCS representation.

 You are strongly encouraged to use strings to represent message
property values. This will eliminate potential conversion issues.

Capitalware's MQ Technical Conference v2.0.1.5

A Technical Implementation Solution Pattern (cont.)

31

Message getting application pattern structure:

 YES: Process message

 Application initialization

 Loop until exit condition:

 Get a message (using first object handle)

 Inquire MP: 'MessageGroupId' == NULL?

For the purpose of illustrating the technical implementation pattern, the demonstration
application employs a simple process loop pattern:

 NO: This is a reference message for a segmented message
• Inquire MP: 'MessageSize' ; allocate message buffer memory
• Initialize MQMD and GMO data structures for getting the segmented message
• Get the segmented message (using second object handle)
• Process message data payload
• Initialize MQMD and GMO data structures for getting the next (regular) message

 Continue

 Instantiate two object handles to the get queue:

1) The first object handle has no selector string defined to it

2) The second object handle has an application-specific selector string defined to it

Capitalware's MQ Technical Conference v2.0.1.5

A Technical Implementation Solution Pattern (cont.)

32

Solution Enhancements to the Message Getting Application

YES NO

Get Message
Application Setup and

Initialization

Open Two
Connections to MQGET

Queue

#1: Selector String
#2: No Selector String

Get Message &
Inquire MsgGroupID

Message Property

Property Name:
'MessageGroupId'

= NULL?

Inquire Property Name:
'MessageLength'

Allocate Memory for
Message Buffer

Process Small Message

With Properties

Set GMO & MQMD

Get Segmented
Message

Reset GMO & MQMD

for Small Message

START

Process Segmented

Message Data

Payload

Capitalware's MQ Technical Conference v2.0.1.5

A Technical Implementation Solution Pattern (cont.)

33

Code enhancements to the message getting application:

 The salient functional enhancements which enable the message getting
application to process the 'reference' and 'data' messages that comprise
a segmented message group consist of:

1. Instantiating two object handles to the MQGET queue:

i. The first queue object handle will have no selector and will be used to get auto-
segmented data payload messages.

ii. The second queue object handle will have a selector string defined on it and will
be used to get messages (< 4MiB) that have properties defined on them.

2. Incorporating two additional solution-specific message properties:
i. The first message property will supply the size of the message data payload.

ii. The second message property will supply the message group ID that is
assigned by the message putting application to the segmented data payload
message’s MQMD.GroupId property.

Capitalware's MQ Technical Conference v2.0.1.5

N

O

T

E

S

Solution Logic

Please refer to the 'putwmp.c' and 'getwmp.c' source files which are authoritative exemplars
for code enhancements required to implement the solution.

Note that the 'putwmp.c' application incorporates additional logic required to demonstrate
failure of queue manager mediated auto-segmentation of messages that have properties defined
on them.

Some may have preferred such demonstration be presented via a separate process in order to
keep solution-specific logic as transparent as possible. In hindsight I wish I had done just
that. In particular the MQPUT1 logic is obtusely dense. If additional clarity is desired,
please feel free to email me with any questions you may have (grebrown@caci.com).

33.1

Capitalware's MQ Technical Conference v2.0.1.5

 Learned the background history on problem discovery and the

subsequent interaction with L2 / L3 support.

What We Covered:

34

 Reviewed queue manager mediated auto-segmentation of large

messages.

 Reviewed message properties (and selectors).

 Investigated the underlying mechanics of the problem.

 Considered a technical implementation solution pattern.

 Presented a description of the fault-generating environment.

 Code enhancements to the message putting application

 Code enhancements to the message getting application

Capitalware's MQ Technical Conference v2.0.1.5

Exit Stage Right

35

THANK YOU!

Capitalware's MQ Technical Conference v2.0.1.5

Questions & Answers

oo

