
Capitalware's MQ Technical Conference v2.0.1.4

MQ Problem Determination MQ Problem Determination
with Tracing on Linuxwith Tracing on Linux

Tim Zielke

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Introduction and Agenda
My Background:

•I have been in IT for 17 years with Hewitt Associates/Aon
•First 13 years mainly on the Mainframe COBOL application side
•Last 4 years as a CICS/MQ systems programmer
•Last 8 years also working with Linux

Session Agenda:

Using the Linux x86 platform, we will cover the following topics that can help
with MQ problem determination:

•MQ API Tracing (also the MH06 Trace Tools supportpac)
•Application Activity Trace
•Helpful Linux x86 internals and commands for MQ problem determination

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ API Tracing on Linux - Overview
Overview:

MQ API tracing is a debugging tool that comes with WebSphere MQ. An MQ
API trace of an MQ application will include all of the API calls (i.e. MQOPEN,
MQPUT, etc.) that the application makes, including the input and return data
for each API call. This API data is very helpful in MQ problem determination,
as it allows you to see what input data your application is passing to MQ and
what return data your application is getting back from MQ. The MQ API trace
can be cryptic to read, but we will cover a trace tool (mqtrcfrmt) that can
significantly aid in reading MQ API traces much more quickly and accurately.
We will do this, using Linux x86 as our platform.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ API Tracing – Example with amqsput
 Turn on an API trace for the amqsput program
strmqtrc –m qmgr –t api –p amqsput

 Run the amqsput program on a TCZ.TEST1 queue, and do two PUTs to the
queue, and then end the program.

 NOTE: By default, trace writes out on Linux x86 to a file like:
/var/mqm/trace/AMQ16884.0.TRC (where 16884 = pid)

 Turn off the tracing
endmqtrc –a

 Format the trace
dspmqtrc AMQ16884.0.TRC > AMQ16884.0.FMT

 See handout #1 for contents of AMQ16884.0.FMT

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Orientation in Reading an MQ API Trace
 Lines 3 – 27 have the trace header information.

 Line 33 shows the following trace data will have a microsecond time stamp,
process.thread, and then API trace data.

 Lines 48 – 90 are an example of an MQOPEN API call. The trace records
immediately following the “MQOPEN >>” on line 48 are the input data before
entering the MQOPEN API. The trace records immediately following the
“MQOPEN <<“ on line 69 are the output data after exiting the MQOPEN API.
Note that some data (i.e. ObjDesc) is both input and output data. Options is
just input data. Compcode is just output data.

 Note for the Objdesc (lines 51 - 62), this MQ API data structure is printed in
the raw hex data format, with each 16 byte line formatted to ASCII directly to
the right.

 The rest of the API trace contains the 2 MQPUTs, and MQCLOSE, MQDISC.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Endianness – Little Endian (x86)
Endianness is the byte ordering of a CPU for multi-byte binary data. For
reading MQ traces, it is helpful to understand Little endianness and Big
endianness.

Example: x’01400006’ stored on a Little endian processor (x86)

A Little endian CPU (x86) will store this 4 byte value at the starting memory
address (i.e. address x’0000A010’) from the least significant byte to most
significant byte, or little end first.

address 0000A010 = x’06’
address 0000A011 = x’00’
address 0000A012 = x’40’
address 0000A013 = x’01’

When looking at an MQ trace, this would appear as 06004001. This looks
intuitively “reversed” when reading the trace.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Endianness – Big Endian (i.e. SPARC)
Example: x’01400006’ stored on a Big endian processor (SPARC)

A Big endian CPU (SPARC) will store this 4 byte value at the starting memory
address (i.e. address x’0000A010’) from the most significant byte to least
significant byte, or big end first.

address 0000A010 = x’01’
address 0000A011 = x’40’
address 0000A012 = x’00’
address 0000A013 = x’06’

When looking at an MQ trace, this would appear as 01400006. This looks
intuitively “normal” when reading the trace.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – Reading a Data Structure
 MQ data structures such as Objdesc, Msgdesc, Putmsgopts, etc. appear in

the trace. The MQ data structures follow a format of a 4 byte character
structure id, a 4 byte binary integer version id, and then subsequent fields.
The layouts of the data structures can be found in the MQ manual.

 1 2 3

 51 13:15:37.742885 16884.1 Objdesc:
 52 13:15:37.742887 16884.1 0x0000: 4f442020 01000000 01000000 54435a2e
 53 13:15:37.742887 16884.1 0x0010: 54455354 31000000 00000000 00000000

Field 1 is Structure Id (MQCHAR4) = x’4f442020’ = “OD “
Field 2 is Version (MQLONG) = x’01000000’ = 1
Field 3 is Object Type (MQLONG) = x’01000000’ = 1 (MQOT_Q or Queue Object Type)

Remember to reverse bytes for binary fields, since this trace is little endian (x86):

Version:
01 00 00 00

00 00 00 01 = Version is 1

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – Reading an Options Field
 Reading Open Options on line 64

 63 13:15:37.742888 16884.1 Options:
 64 13:15:37.742889 16884.1 0x0000: 10200000

Reverse bytes for binary integer fields, since this is little endian:

Options (MQLONG):
10 20 00 00

00 00 20 10 = Options is x’00002010’ = 8208

To convert 8208 to its open options constant values, find the largest open option value that is closest
to or equal to 8208 and subtract that value. Continue this process, until you reach 0.

8192 = MQOO_FAIL_IF_QUIESCING

8208 – 8192 = 16

16 = MQOO_OUTPUT

16 – 16 = 0

Therefore, 8208 = MQOO_FAIL_IF_QUIESCING, MQOO_OUTPUT

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – mqtrcfrmt tool in MH06
 mqtrcfrmt is a trace tool that comes with the MH06 supportpac. It will help

you read a trace by expanding the MQ data structures by labeling the fields
and include constant expansions. Executables are provided for Linux x86,
Solaris Sparc, and Windows.

 Using the mqtrcfrmt tool:

mqtrcfrmt.linux AMQ16884.0.FMT AMQ16884.0.FMT2

 See handout #2 for contents of AMQ16884.0.FMT2

 User customizable API summary trace from AMQ16884.0.FMT2

egrep '(>>$| <<$|Hconn=|Hobj=|Compcode=|Reason=|Hmsg=|Actual Name=|
Value=|Options=|Type=|ObjectName |ResolvedQName |Persistence)'
AMQ16884.0.FMT2

 See handout #3 for results of this API summary trace

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing - AMQ16884.0.FMT2
 59 13:15:37.742885 16884.1 Objdesc:
 60 13:15:37.742887 16884.1 0x0000: 4f442020 01000000 01000000 54435a2e
 61 13:15:37.742887 16884.1 0x0010: 54455354 31000000 00000000 00000000
 62 13:15:37.742887 16884.1 0x0020: 00000000 00000000 00000000 00000000
 63 13:15:37.742887 16884.1 0x0030: 00000000 00000000 00000000 00000000
 64 13:15:37.742887 16884.1 0x0040: 00000000 00000000 00000000 00000000
 65 13:15:37.742887 16884.1 0x0050: 00000000 00000000 00000000 00000000
 66 13:15:37.742887 16884.1 0x0060: 00000000 00000000 00000000 414d512e
 67 13:15:37.742887 16884.1 0x0070: 2a000000 00000000 00000000 00000000
 68 13:15:37.742887 16884.1 0x0080: 00000000 00000000 00000000 00000000
 69 13:15:37.742887 16884.1 0x0090: 00000000 00000000 00000000 00000000
 70 13:15:37.742887 16884.1 0x00a0: 00000000 00000000
 71 16884.1 Objdesc expanded (all fields):
 72 16884.1 StrucId (CHAR4) : 'OD '
 73 16884.1 x'4f442020'
 74 16884.1 Version (MQLONG) : 1
 75 16884.1 x'01000000'
 76 16884.1 ObjectType (MQLONG) : 1
 77 16884.1 x'01000000'
 78 16884.1 ObjectType MQOT_Q
 79 16884.1 ObjectName (MQCHAR48) : 'TCZ.TEST1'
 80 16884.1 x'54435a2e5445535431
 81 16884.1 ObjectQMgrName (MQCHAR48) : '.........'
 82 16884.1 x'000000000000000000
 83 16884.1 DynamicQName (MQCHAR48) : 'AMQ.*
 84 16884.1 x'414d512e2a
 85 16884.1 AlternateUserId (MQCHAR12) : '............'
 86 16884.1 x'000000000000000000

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – API Summary Trace
mqm@MYSERVER123$ egrep '(>>$| <<$|Hconn=|Hobj=|Compcode=|Reason=|Hmsg=|Actual Name=|Value=|Options=|
Type=|ObjectName |ResolvedQName |Persistence)' AMQ16884.0.FMT2

 13:15:37.742829 16884.1 CONN:1400006 MQCONN <<
 16884.1 Hconn=06004001
 16884.1 MQCNO.Options= (MQLONG) : 256
 16884.1 Options=MQCNO_SHARED_BINDING
 16884.1 Compcode=0
 16884.1 Reason=0
 13:15:37.742881 16884.1 CONN:1400006 MQOPEN >>
 16884.1 Hconn=06004001
 16884.1 ObjectName (MQCHAR48) :
'TCZ.TEST1.......................................'
 16884.1 MQOO.Options= (MQLONG) : 8208
 16884.1 Options=MQOO_OUTPUT
 16884.1 Options=MQOO_FAIL_IF_QUIESCING
 13:15:37.743138 16884.1 CONN:1400006 MQOPEN <<
 16884.1 ObjectName (MQCHAR48) :
'TCZ.TEST1.......................................'
 16884.1 Hobj=02000000
 16884.1 Compcode=0
 16884.1 Reason=0
 13:15:37.743176 16884.1 CONN:1400006 MQI:MQOPEN HConn=01400006 HObj=00000002 rc=00000000
ObjType=00000001 ObjName=TCZ.TEST1

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – Other Uses
1) General performance of API calls
 API tracing provides microsecond timings in the trace record. By finding

the API begin (i.e. MQGET >>) and the API end (i.e. reason field of
MQGET <<) you can roughly calculate the time it took for the API MQGET
to complete. Do note that tracing does add overhead to the timings.

 48 13:15:37.742881 16884.1 CONN:1400006 MQOPEN >>

 69 13:15:37.743138 16884.1 CONN:1400006 MQOPEN <<

 88 13:15:37.743157 16884.1 CONN:1400006 Reason:
 89 13:15:37.743158 16884.1 CONN:1400006 0x0000: 00000000

13:15:37.743158 - 13:15:37.742881 = 0.000277 seconds to complete for the MQOPEN

 mqapitrcstats tool in the MH06 Trace Tools supportpac will read an entire
API trace and create a summary report of the response times of the open,
close, get, put, and put1 API calls. Executables are provided for Linux x86,
Solaris Sparc, and Windows.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – Other Uses
2) Investigation of triggering issues

strmqtrc –m qmgr –t all –p runmqtrm

The runmqtrm trace will record if/when the trigger message was read from the
INITQ, if/when it started the application of your process, and the operating
system return code from the start call. Also, this does not require that
runmqtrm be run in the foreground.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Some Final MQ Tracing Notes
 Client applications can be traced, as well. You can either run a client trace

on the client server (unfortunately, Java clients do not support this type of
tracing) or trace the queue manager process that the SVRCONN channel is
running on.

 Examples of client traces

1.strmqtrc –t api –p prog1 (from client server)
2.strmqtrc –m qmgr –t api –p amqrmppa (from queue manager server)

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Some Final MQ Tracing Notes – cont
 Tracing adds performance overhead and can create large files. Be judicious

on the length of time that you run the trace and try and be selective with the
options (i.e. –t api –p prog1) to reduce any unneeded output. Also, keep an
eye on the size of your trace files and your space available on your trace file
system (i.e. /var/mqm). You can also use the strmqtrc –l (MaxSize in MB)
option to limit the size of your trace files, but this means that trace data can
be overwritten and lost. The –l option keeps a current AMQppppp.qq.TRC
and a previous AMQppppp.qq.TRS file.

strmqtrc –m qmgr –t api –p amqsput –l 1

 APAR IT01972 – Queue Manager trace is inadvertently turned off for an
application thread with multiple shared connections after an MQDISC is
called. End result is the potential for trace data loss. Targeted delivery of
PTF is 7.1.0.6, 7.5.0.5, 8.0.0.1.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Application Activity Trace (AAT)
 The Application Activity Trace (AAT) was first introduced in 7.1. It provides

detailed information of the behavior of applications connected to a queue
manager, including their MQI call details.

 “Increasing the visibility of messages using WebSphere MQ Application
Activity Trace” by Emma Bushby is an IBM DeveloperWorks article that does
a good job in explaining the Application Activity Trace in detail.

 The AAT is another tool that can be helpful in MQ problem determination or
application review, by giving you visibility to the inputs and outputs of your
application API calls.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – Usage Notes
 Applications write AAT records to the

SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE.

 There is a hierarchy to turning ON/OFF the AAT:
1. ACTVTRC queue manager attribute (ON/OFF)
 (overridden by)
2. MQCNO_ACTIVITY_TRACE connection options specified in an MQCONNX

(NOTE: ACTVCONO queue manager attribute must be ENABLED for this to
be checked, and the default value is DISABLED)

 (overridden by)
3. Settings in a matching stanza in mqat.ini (located in qm.ini directory)

 In order to pick up a mqat.ini change dynamically in a running program, you
need to toggle the ACTVTRC queue manager attribute (i.e. ON/OFF).

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – Viewing the Data
 MS0P supportpac (WebSphere MQ Explorer Extended Management Plug-

ins) has an Application Activity Trace viewer.

 amqsact is a command line tool (sample code also provided) that can read
the messages from the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE and
format them into summary and verbose reports.

 amqsactz on Capitalware’s Sample WebSphere MQ C Code web site is a
program that takes the amqsact sample code and provides the following
enhancements:

1.Includes more data (i.e. Conn, Channel, etc.) on API one line summaries.
2.Includes –r option for helpful summary reports
3.Corrects a print formatting issue where a byte like x’DF’ was printed as

x’FFFFFFDF’.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsputc example
1) Add an ApplicationTrace stanza for amqsputc to the mqat.ini to turn on AAT
tracing.

ApplicationTrace: # Application specific settings stanza
 ApplClass=ALL # Application type
 # Values: (USER | MCA | ALL)
 # Default: USER
 ApplName=amqsputc # Application name (may be wildcarded)
 # (matched to app name without path)
 # Default: *
 Trace=ON # Activity trace switch for application
 # Values: (ON | OFF)
 # Default: OFF
 ActivityInterval=0 # Time interval between trace messages
 # Values: 0-99999999 (0=off)
 # Default: 0
 ActivityCount=0 # Number of operations between trace msgs
 # Values: 0-99999999 (0=off)
 # Default: 0
 TraceLevel=MEDIUM # Amount of data traced for each operation
 # Values: LOW | MEDIUM | HIGH
 # Default: MEDIUM
 TraceMessageData=0 # Amount of message data traced
 # Values: 0-104857600
 # Default: 0

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsputc example
2) Run the amqsputc sample program.

mqm$ export MQSERVER='CLIENT.TO.SERVER/TCP/SERVER01'
mqm$ amqsputc TCZ.TEST1
Sample AMQSPUT0 start
target queue is TCZ.TEST1
test1
test2
test3
test4
test5

Sample AMQSPUT0 end

3) Update ApplicationTrace stanza for amqsputc in the mqat.ini to turn off AAT
tracing.

NOTE: If instead, amqsputc was to continue to run and you turned the trace off
with the mqat.ini change, you would need to toggle the ACTVTRC queue
manager attribute ON/OFF to have amqsputc pick up the mqat.ini change.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsactz reports
4) Use amqsactz to view AAT data, by generating 3 reports:

1.amqsactz.out – non-verbose report with –r summary information
2.amqsactz_1LS.out – API one line summaries selected from amqsactz.out
3.amqsactv_v.out – verbose report

amqsactz.out – non-verbose report, includes –r summary output at bottom of
report

amqsactz -r -b > amqsactz.out

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out
MonitoringType: MQI Activity Trace RecordNum: 0 1
Correl_id:
00000000: 414D 5143 5345 5256 5245 3031 2E4D 5154 'AMQCSERVER01.MQT'
00000010: 53E3 C453 010A F420 'S..S... '
QueueManager: 'SERVER01.MQTEST1'
Host Name: 'server01'
IntervalStartDate: '2014-08-28'
IntervalStartTime: '09:24:29'
IntervalEndDate: '2014-08-28'
IntervalEndTime: '09:24:35'
CommandLevel: 750
SeqNumber: 0
ApplicationName: 'amqsputc‘ 2
Application Type: MQAT_UNIX
ApplicationPid: 24912
UserId: 'mqm‘ 3
API Caller Type: MQXACT_EXTERNAL
API Environment: MQXE_MCA_SVRCONN
Channel Name: 'CLIENT.TO.SERVER'
ConnName: '127.0.0.1‘ 4
Channel Type: MQCHT_SVRCONN
Application Function: ''
Appl Function Type: MQFUN_TYPE_UNKNOWN
Trace Detail Level: 2
Trace Data Length: 0
Pointer size: 8
Platform: MQPL_UNIX

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out
UserId: 'mqm'
API Caller Type: MQXACT_EXTERNAL
API Environment: MQXE_MCA_SVRCONN
Channel Name: 'CLIENT.TO.SERVER'
ConnName: '127.0.0.1'
Channel Type: MQCHT_SVRCONN
Application Function: ''
Appl Function Type: MQFUN_TYPE_UNKNOWN 1
Trace Detail Level: 2
Trace Data Length: 0
Pointer size: 8 2
Platform: MQPL_UNIX
==
EYEC RecordNum Pid Tid Conn Channel Name Date Time Operation MQRC HObj
(ObjName)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_CONNX 0000 -
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_OPEN 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:31 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:31 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:32 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:33 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_CLOSE 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_DISC 0000 -
==

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out (-r summary option)
==
Application Summary Report
==
Pid ApplicationName UserId Tid Count MQI Count
24912 amqsputc mqm 1 11

==
Application Objects Referenced Report
==
pid: 24912 ApplicationName: amqsputc UserId: mqm referenced the following objects:
 ObjName: TCZ.TEST1 Count: 7

==
Application Objects Options Report
Options tracked are conn, open, get, put, close, callback, sub, subrq
==
pid: 24912 ApplicationName: amqsputc UserId: mqm referenced the following options by object:
 Object Name: TCZ.TEST1
 Open Options: 8208 Count: 1
 MQOO_OUTPUT
 MQOO_FAIL_IF_QUIESCING
 Put Options: 8260 Count: 5
 MQPMO_NO_SYNCPOINT
 MQPMO_NEW_MSG_ID
 MQPMO_FAIL_IF_QUIESCING
 Close Options: 0 Count: 1
 MQCO_NONE
 MQCO_IMMEDIATE

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out (-r summary option)
==
Application Channels Referenced Report
==
pid: 24912 ApplicationName: amqsputc UserId: mqm referenced the following channels:
 ChannelName: CLIENT.TO.SERVER Count: 11

==
Application Operations Executed Report
==
pid: 24912 ApplicationName: amqsputc UserId: mqm executed the
following operations:
 Operation: MQXF_BACK Count: 1
 Operation: MQXF_CLOSE Count: 1
 Operation: MQXF_CONNX Count: 1
 Operation: MQXF_DISC Count: 2
 Operation: MQXF_OPEN Count: 1
 Operation: MQXF_PUT Count: 5

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out (-r summary option)
==
Application Operations Options Report
Options tracked are conn, open, get, put, close, callback, sub, subrq
==
pid: 24912 ApplicationName: amqsputc UserId: mqm referenced the following options by operations:
 Operation: MQXF_CLOSE
 Close Options: 0 Count: 1
 MQCO_NONE
 MQCO_IMMEDIATE
 Operation: MQXF_CONNX
 Connect Options: 320 Count: 1
 MQCNO_HANDLE_SHARE_BLOCK
 MQCNO_SHARED_BINDING
 Operation: MQXF_OPEN
 Open Options: 8208 Count: 1
 MQOO_OUTPUT
 MQOO_FAIL_IF_QUIESCING
 Operation: MQXF_PUT
 Put Options: 8260 Count: 5
 MQPMO_NO_SYNCPOINT
 MQPMO_NEW_MSG_ID
 MQPMO_FAIL_IF_QUIESCING

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsactz reports
 Remember, each API summary line had a 1LS= eye catcher text in it.

==
EYEC RecordNum Pid Tid Conn Channel Name Date Time Operation MQRC HObj

(ObjName)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_CONNX 0000 -
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_OPEN 0000 2

(TCZ.TEST1)

 amqsactz_1LS.out - Use the 1LS= to grep out all the API one line summary
records into a report.

grep 1LS= amqsactz.out > amqsactz_1LS.out

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz_1LS.out
 1 (RecordNum) 2 (Pid) 3 (Tid) 4 (Conn) 5 (Channel)

1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_CONNX 0000 -
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_OPEN 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:31 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:31 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:32 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:33 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_CLOSE 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_DISC 0000 -
1LS= 1 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_BACK 0000 -
1LS= 1 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_DISC 0000 -

 6 (ObjName) NOTE: ObjName is being line wrapped, and is on same line as MQXF_CLOSE)

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsactz reports
 amqsactz_v.out – verbose report for each AAT record

amqsactz -v -b > amqsactz_v.out

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz_v.out
MonitoringType: MQI Activity Trace RecordNum: 0
MQI Operation: 2
 Operation Id: MQXF_PUT
 ApplicationTid: 2606
 OperationDate: '2014-08-28'
 OperationTime: '09:24:31'
 High Res Time: 1409235871018640
 Completion Code: MQCC_OK
 Reason Code: 0
 Hobj: 2
 Put Options: 8260 1
 Msg length: 5
 Known_dest_count: 1
 Unknown_dest_count: 0
 Invalid_dest_count: 0
 Object_type: MQOT_Q
 Object_name: 'TCZ.TEST1‘ 2
 Object_Q_mgr_name: ''
 Resolved_Q_Name: 'TCZ.TEST1'
 Resolved_Q_mgr: 'SERVER01.MQTEST1'
 Resolved_local_Q_name: 'TCZ.TEST1'
 Resolved_local_Q_mgr: 'SERVER01.MQTEST1'
 Resolved_type: MQOT_Q
 Report Options: 0
 Msg_type: MQMT_DATAGRAM
 Expiry: -1 3
 Format_name: 'MQSTR'
 Priority: -1 4
 Persistence: 2
 Msg_id:
 00000000: 414D 5120 5345 5256 5245 3031 2E4D 5154 'AMQ SERVER01.MQT'
 00000010: 53E3 C453 020A F420 'S..S... '

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Linux Internals - /proc file system
 The /proc file system is a virtual file system that allows you access to internal

kernel data.

 /proc/pid/environ will show you the environment variables for a pid when the
process was created. NOTE: Later changes to the environment after the
process is created are not reflected here. See handout #8.

 /proc/pid/limits will show the user limits for a process. Later versions of the
Linux kernel (I believe 2.6.32) allow you to dynamically update the limits for a
running process. For example, you can increase the Max open files setting
for a running queue manager process. See handout #9.

 /proc/pid/fd will show the file descriptors for the process. You could see
which files that the process has open, or how many files are open. See
handout #10.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Linux Commands - strace
 strace will trace the system calls (i.e. open, write, etc.) that a process is

making. This can be helpful to see internally what a process is doing for
problem determination. You need the proper security to strace a process.
For processes running under the mqm id, you need to be the mqm id.

 Possible uses are:
1.strace the start up of the queue manager to see if an exit is being invoked.
2.strace an actively running process that seems to be hung.
3.strace a problematic MQ command.

 Helpful pieces to search for in the strace output:
1.file names
2.programs being executed
3.error messages being written

See handout #11.

Capitalware's MQ Technical Conference v2.0.1.4

Questions & Answers

Capitalware's MQ Technical Conference v2.0.1.4

MQ Problem Determination MQ Problem Determination
with Tracing on Linuxwith Tracing on Linux

Tim Zielke

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Introduction and Agenda
My Background:

•I have been in IT for 17 years with Hewitt Associates/Aon
•First 13 years mainly on the Mainframe COBOL application side
•Last 4 years as a CICS/MQ systems programmer
•Last 8 years also working with Linux

Session Agenda:

Using the Linux x86 platform, we will cover the following topics that can help
with MQ problem determination:

•MQ API Tracing (also the MH06 Trace Tools supportpac)
•Application Activity Trace
•Helpful Linux x86 internals and commands for MQ problem determination

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ API Tracing on Linux - Overview
Overview:

MQ API tracing is a debugging tool that comes with WebSphere MQ. An MQ
API trace of an MQ application will include all of the API calls (i.e. MQOPEN,
MQPUT, etc.) that the application makes, including the input and return data
for each API call. This API data is very helpful in MQ problem determination,
as it allows you to see what input data your application is passing to MQ and
what return data your application is getting back from MQ. The MQ API trace
can be cryptic to read, but we will cover a trace tool (mqtrcfrmt) that can
significantly aid in reading MQ API traces much more quickly and accurately.
We will do this, using Linux x86 as our platform.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ API Tracing – Example with amqsput
 Turn on an API trace for the amqsput program
strmqtrc –m qmgr –t api –p amqsput

 Run the amqsput program on a TCZ.TEST1 queue, and do two PUTs to the
queue, and then end the program.

 NOTE: By default, trace writes out on Linux x86 to a file like:
/var/mqm/trace/AMQ16884.0.TRC (where 16884 = pid)

 Turn off the tracing
endmqtrc –a

 Format the trace
dspmqtrc AMQ16884.0.TRC > AMQ16884.0.FMT

 See handout #1 for contents of AMQ16884.0.FMT

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Orientation in Reading an MQ API Trace
 Lines 3 – 27 have the trace header information.

 Line 33 shows the following trace data will have a microsecond time stamp,
process.thread, and then API trace data.

 Lines 48 – 90 are an example of an MQOPEN API call. The trace records
immediately following the “MQOPEN >>” on line 48 are the input data before
entering the MQOPEN API. The trace records immediately following the
“MQOPEN <<“ on line 69 are the output data after exiting the MQOPEN API.
Note that some data (i.e. ObjDesc) is both input and output data. Options is
just input data. Compcode is just output data.

 Note for the Objdesc (lines 51 - 62), this MQ API data structure is printed in
the raw hex data format, with each 16 byte line formatted to ASCII directly to
the right.

 The rest of the API trace contains the 2 MQPUTs, and MQCLOSE, MQDISC.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Endianness – Little Endian (x86)
Endianness is the byte ordering of a CPU for multi-byte binary data. For
reading MQ traces, it is helpful to understand Little endianness and Big
endianness.

Example: x’01400006’ stored on a Little endian processor (x86)

A Little endian CPU (x86) will store this 4 byte value at the starting memory
address (i.e. address x’0000A010’) from the least significant byte to most
significant byte, or little end first.

address 0000A010 = x’06’
address 0000A011 = x’00’
address 0000A012 = x’40’
address 0000A013 = x’01’

When looking at an MQ trace, this would appear as 06004001. This looks
intuitively “reversed” when reading the trace.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Endianness – Big Endian (i.e. SPARC)
Example: x’01400006’ stored on a Big endian processor (SPARC)

A Big endian CPU (SPARC) will store this 4 byte value at the starting memory
address (i.e. address x’0000A010’) from the most significant byte to least
significant byte, or big end first.

address 0000A010 = x’01’
address 0000A011 = x’40’
address 0000A012 = x’00’
address 0000A013 = x’06’

When looking at an MQ trace, this would appear as 01400006. This looks
intuitively “normal” when reading the trace.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – Reading a Data Structure
 MQ data structures such as Objdesc, Msgdesc, Putmsgopts, etc. appear in

the trace. The MQ data structures follow a format of a 4 byte character
structure id, a 4 byte binary integer version id, and then subsequent fields.
The layouts of the data structures can be found in the MQ manual.

 1 2 3

 51 13:15:37.742885 16884.1 Objdesc:
 52 13:15:37.742887 16884.1 0x0000: 4f442020 01000000 01000000 54435a2e
 53 13:15:37.742887 16884.1 0x0010: 54455354 31000000 00000000 00000000

Field 1 is Structure Id (MQCHAR4) = x’4f442020’ = “OD “
Field 2 is Version (MQLONG) = x’01000000’ = 1
Field 3 is Object Type (MQLONG) = x’01000000’ = 1 (MQOT_Q or Queue Object Type)

Remember to reverse bytes for binary fields, since this trace is little endian (x86):

Version:
01 00 00 00

00 00 00 01 = Version is 1

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – Reading an Options Field
 Reading Open Options on line 64

 63 13:15:37.742888 16884.1 Options:
 64 13:15:37.742889 16884.1 0x0000: 10200000

Reverse bytes for binary integer fields, since this is little endian:

Options (MQLONG):
10 20 00 00

00 00 20 10 = Options is x’00002010’ = 8208

To convert 8208 to its open options constant values, find the largest open option value that is closest
to or equal to 8208 and subtract that value. Continue this process, until you reach 0.

8192 = MQOO_FAIL_IF_QUIESCING

8208 – 8192 = 16

16 = MQOO_OUTPUT

16 – 16 = 0

Therefore, 8208 = MQOO_FAIL_IF_QUIESCING, MQOO_OUTPUT

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – mqtrcfrmt tool in MH06
 mqtrcfrmt is a trace tool that comes with the MH06 supportpac. It will help

you read a trace by expanding the MQ data structures by labeling the fields
and include constant expansions. Executables are provided for Linux x86,
Solaris Sparc, and Windows.

 Using the mqtrcfrmt tool:

mqtrcfrmt.linux AMQ16884.0.FMT AMQ16884.0.FMT2

 See handout #2 for contents of AMQ16884.0.FMT2

 User customizable API summary trace from AMQ16884.0.FMT2

egrep '(>>$| <<$|Hconn=|Hobj=|Compcode=|Reason=|Hmsg=|Actual Name=|
Value=|Options=|Type=|ObjectName |ResolvedQName |Persistence)'
AMQ16884.0.FMT2

 See handout #3 for results of this API summary trace

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing - AMQ16884.0.FMT2
 59 13:15:37.742885 16884.1 Objdesc:
 60 13:15:37.742887 16884.1 0x0000: 4f442020 01000000 01000000 54435a2e
 61 13:15:37.742887 16884.1 0x0010: 54455354 31000000 00000000 00000000
 62 13:15:37.742887 16884.1 0x0020: 00000000 00000000 00000000 00000000
 63 13:15:37.742887 16884.1 0x0030: 00000000 00000000 00000000 00000000
 64 13:15:37.742887 16884.1 0x0040: 00000000 00000000 00000000 00000000
 65 13:15:37.742887 16884.1 0x0050: 00000000 00000000 00000000 00000000
 66 13:15:37.742887 16884.1 0x0060: 00000000 00000000 00000000 414d512e
 67 13:15:37.742887 16884.1 0x0070: 2a000000 00000000 00000000 00000000
 68 13:15:37.742887 16884.1 0x0080: 00000000 00000000 00000000 00000000
 69 13:15:37.742887 16884.1 0x0090: 00000000 00000000 00000000 00000000
 70 13:15:37.742887 16884.1 0x00a0: 00000000 00000000
 71 16884.1 Objdesc expanded (all fields):
 72 16884.1 StrucId (CHAR4) : 'OD '
 73 16884.1 x'4f442020'
 74 16884.1 Version (MQLONG) : 1
 75 16884.1 x'01000000'
 76 16884.1 ObjectType (MQLONG) : 1
 77 16884.1 x'01000000'
 78 16884.1 ObjectType MQOT_Q
 79 16884.1 ObjectName (MQCHAR48) : 'TCZ.TEST1'
 80 16884.1 x'54435a2e5445535431
 81 16884.1 ObjectQMgrName (MQCHAR48) : '.........'
 82 16884.1 x'000000000000000000
 83 16884.1 DynamicQName (MQCHAR48) : 'AMQ.*
 84 16884.1 x'414d512e2a
 85 16884.1 AlternateUserId (MQCHAR12) : '............'
 86 16884.1 x'000000000000000000

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – API Summary Trace
mqm@MYSERVER123$ egrep '(>>$| <<$|Hconn=|Hobj=|Compcode=|Reason=|Hmsg=|Actual Name=|Value=|Options=|
Type=|ObjectName |ResolvedQName |Persistence)' AMQ16884.0.FMT2

 13:15:37.742829 16884.1 CONN:1400006 MQCONN <<
 16884.1 Hconn=06004001
 16884.1 MQCNO.Options= (MQLONG) : 256
 16884.1 Options=MQCNO_SHARED_BINDING
 16884.1 Compcode=0
 16884.1 Reason=0
 13:15:37.742881 16884.1 CONN:1400006 MQOPEN >>
 16884.1 Hconn=06004001
 16884.1 ObjectName (MQCHAR48) :
'TCZ.TEST1.......................................'
 16884.1 MQOO.Options= (MQLONG) : 8208
 16884.1 Options=MQOO_OUTPUT
 16884.1 Options=MQOO_FAIL_IF_QUIESCING
 13:15:37.743138 16884.1 CONN:1400006 MQOPEN <<
 16884.1 ObjectName (MQCHAR48) :
'TCZ.TEST1.......................................'
 16884.1 Hobj=02000000
 16884.1 Compcode=0
 16884.1 Reason=0
 13:15:37.743176 16884.1 CONN:1400006 MQI:MQOPEN HConn=01400006 HObj=00000002 rc=00000000
ObjType=00000001 ObjName=TCZ.TEST1

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – Other Uses
1) General performance of API calls
 API tracing provides microsecond timings in the trace record. By finding

the API begin (i.e. MQGET >>) and the API end (i.e. reason field of
MQGET <<) you can roughly calculate the time it took for the API MQGET
to complete. Do note that tracing does add overhead to the timings.

 48 13:15:37.742881 16884.1 CONN:1400006 MQOPEN >>

 69 13:15:37.743138 16884.1 CONN:1400006 MQOPEN <<

 88 13:15:37.743157 16884.1 CONN:1400006 Reason:
 89 13:15:37.743158 16884.1 CONN:1400006 0x0000: 00000000

13:15:37.743158 - 13:15:37.742881 = 0.000277 seconds to complete for the MQOPEN

 mqapitrcstats tool in the MH06 Trace Tools supportpac will read an entire
API trace and create a summary report of the response times of the open,
close, get, put, and put1 API calls. Executables are provided for Linux x86,
Solaris Sparc, and Windows.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

MQ Tracing – Other Uses
2) Investigation of triggering issues

strmqtrc –m qmgr –t all –p runmqtrm

The runmqtrm trace will record if/when the trigger message was read from the
INITQ, if/when it started the application of your process, and the operating
system return code from the start call. Also, this does not require that
runmqtrm be run in the foreground.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Some Final MQ Tracing Notes
 Client applications can be traced, as well. You can either run a client trace

on the client server (unfortunately, Java clients do not support this type of
tracing) or trace the queue manager process that the SVRCONN channel is
running on.

 Examples of client traces

1.strmqtrc –t api –p prog1 (from client server)
2.strmqtrc –m qmgr –t api –p amqrmppa (from queue manager server)

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Some Final MQ Tracing Notes – cont
 Tracing adds performance overhead and can create large files. Be judicious

on the length of time that you run the trace and try and be selective with the
options (i.e. –t api –p prog1) to reduce any unneeded output. Also, keep an
eye on the size of your trace files and your space available on your trace file
system (i.e. /var/mqm). You can also use the strmqtrc –l (MaxSize in MB)
option to limit the size of your trace files, but this means that trace data can
be overwritten and lost. The –l option keeps a current AMQppppp.qq.TRC
and a previous AMQppppp.qq.TRS file.

strmqtrc –m qmgr –t api –p amqsput –l 1

 APAR IT01972 – Queue Manager trace is inadvertently turned off for an
application thread with multiple shared connections after an MQDISC is
called. End result is the potential for trace data loss. Targeted delivery of
PTF is 7.1.0.6, 7.5.0.5, 8.0.0.1.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Application Activity Trace (AAT)
 The Application Activity Trace (AAT) was first introduced in 7.1. It provides

detailed information of the behavior of applications connected to a queue
manager, including their MQI call details.

 “Increasing the visibility of messages using WebSphere MQ Application
Activity Trace” by Emma Bushby is an IBM DeveloperWorks article that does
a good job in explaining the Application Activity Trace in detail.

 The AAT is another tool that can be helpful in MQ problem determination or
application review, by giving you visibility to the inputs and outputs of your
application API calls.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – Usage Notes
 Applications write AAT records to the

SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE.

 There is a hierarchy to turning ON/OFF the AAT:
1. ACTVTRC queue manager attribute (ON/OFF)
 (overridden by)
2. MQCNO_ACTIVITY_TRACE connection options specified in an MQCONNX

(NOTE: ACTVCONO queue manager attribute must be ENABLED for this to
be checked, and the default value is DISABLED)

 (overridden by)
3. Settings in a matching stanza in mqat.ini (located in qm.ini directory)

 In order to pick up a mqat.ini change dynamically in a running program, you
need to toggle the ACTVTRC queue manager attribute (i.e. ON/OFF).

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – Viewing the Data
 MS0P supportpac (WebSphere MQ Explorer Extended Management Plug-

ins) has an Application Activity Trace viewer.

 amqsact is a command line tool (sample code also provided) that can read
the messages from the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE and
format them into summary and verbose reports.

 amqsactz on Capitalware’s Sample WebSphere MQ C Code web site is a
program that takes the amqsact sample code and provides the following
enhancements:

1.Includes more data (i.e. Conn, Channel, etc.) on API one line summaries.
2.Includes –r option for helpful summary reports
3.Corrects a print formatting issue where a byte like x’DF’ was printed as

x’FFFFFFDF’.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsputc example
1) Add an ApplicationTrace stanza for amqsputc to the mqat.ini to turn on AAT
tracing.

ApplicationTrace: # Application specific settings stanza
 ApplClass=ALL # Application type
 # Values: (USER | MCA | ALL)
 # Default: USER
 ApplName=amqsputc # Application name (may be wildcarded)
 # (matched to app name without path)
 # Default: *
 Trace=ON # Activity trace switch for application
 # Values: (ON | OFF)
 # Default: OFF
 ActivityInterval=0 # Time interval between trace messages
 # Values: 0-99999999 (0=off)
 # Default: 0
 ActivityCount=0 # Number of operations between trace msgs
 # Values: 0-99999999 (0=off)
 # Default: 0
 TraceLevel=MEDIUM # Amount of data traced for each operation
 # Values: LOW | MEDIUM | HIGH
 # Default: MEDIUM
 TraceMessageData=0 # Amount of message data traced
 # Values: 0-104857600
 # Default: 0

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsputc example
2) Run the amqsputc sample program.

mqm$ export MQSERVER='CLIENT.TO.SERVER/TCP/SERVER01'
mqm$ amqsputc TCZ.TEST1
Sample AMQSPUT0 start
target queue is TCZ.TEST1
test1
test2
test3
test4
test5

Sample AMQSPUT0 end

3) Update ApplicationTrace stanza for amqsputc in the mqat.ini to turn off AAT
tracing.

NOTE: If instead, amqsputc was to continue to run and you turned the trace off
with the mqat.ini change, you would need to toggle the ACTVTRC queue
manager attribute ON/OFF to have amqsputc pick up the mqat.ini change.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsactz reports
4) Use amqsactz to view AAT data, by generating 3 reports:

1.amqsactz.out – non-verbose report with –r summary information
2.amqsactz_1LS.out – API one line summaries selected from amqsactz.out
3.amqsactv_v.out – verbose report

amqsactz.out – non-verbose report, includes –r summary output at bottom of
report

amqsactz -r -b > amqsactz.out

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out
MonitoringType: MQI Activity Trace RecordNum: 0 1
Correl_id:
00000000: 414D 5143 5345 5256 5245 3031 2E4D 5154 'AMQCSERVER01.MQT'
00000010: 53E3 C453 010A F420 'S..S... '
QueueManager: 'SERVER01.MQTEST1'
Host Name: 'server01'
IntervalStartDate: '2014-08-28'
IntervalStartTime: '09:24:29'
IntervalEndDate: '2014-08-28'
IntervalEndTime: '09:24:35'
CommandLevel: 750
SeqNumber: 0
ApplicationName: 'amqsputc‘ 2
Application Type: MQAT_UNIX
ApplicationPid: 24912
UserId: 'mqm‘ 3
API Caller Type: MQXACT_EXTERNAL
API Environment: MQXE_MCA_SVRCONN
Channel Name: 'CLIENT.TO.SERVER'
ConnName: '127.0.0.1‘ 4
Channel Type: MQCHT_SVRCONN
Application Function: ''
Appl Function Type: MQFUN_TYPE_UNKNOWN
Trace Detail Level: 2
Trace Data Length: 0
Pointer size: 8
Platform: MQPL_UNIX

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out
UserId: 'mqm'
API Caller Type: MQXACT_EXTERNAL
API Environment: MQXE_MCA_SVRCONN
Channel Name: 'CLIENT.TO.SERVER'
ConnName: '127.0.0.1'
Channel Type: MQCHT_SVRCONN
Application Function: ''
Appl Function Type: MQFUN_TYPE_UNKNOWN 1
Trace Detail Level: 2
Trace Data Length: 0
Pointer size: 8 2
Platform: MQPL_UNIX
==
EYEC RecordNum Pid Tid Conn Channel Name Date Time Operation MQRC HObj
(ObjName)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_CONNX 0000 -
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_OPEN 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:31 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:31 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:32 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:33 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_CLOSE 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_DISC 0000 -
==

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out (-r summary option)
==
Application Summary Report
==
Pid ApplicationName UserId Tid Count MQI Count
24912 amqsputc mqm 1 11

==
Application Objects Referenced Report
==
pid: 24912 ApplicationName: amqsputc UserId: mqm referenced the following objects:
 ObjName: TCZ.TEST1 Count: 7

==
Application Objects Options Report
Options tracked are conn, open, get, put, close, callback, sub, subrq
==
pid: 24912 ApplicationName: amqsputc UserId: mqm referenced the following options by object:
 Object Name: TCZ.TEST1
 Open Options: 8208 Count: 1
 MQOO_OUTPUT
 MQOO_FAIL_IF_QUIESCING
 Put Options: 8260 Count: 5
 MQPMO_NO_SYNCPOINT
 MQPMO_NEW_MSG_ID
 MQPMO_FAIL_IF_QUIESCING
 Close Options: 0 Count: 1
 MQCO_NONE
 MQCO_IMMEDIATE

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out (-r summary option)
==
Application Channels Referenced Report
==
pid: 24912 ApplicationName: amqsputc UserId: mqm referenced the following channels:
 ChannelName: CLIENT.TO.SERVER Count: 11

==
Application Operations Executed Report
==
pid: 24912 ApplicationName: amqsputc UserId: mqm executed the
following operations:
 Operation: MQXF_BACK Count: 1
 Operation: MQXF_CLOSE Count: 1
 Operation: MQXF_CONNX Count: 1
 Operation: MQXF_DISC Count: 2
 Operation: MQXF_OPEN Count: 1
 Operation: MQXF_PUT Count: 5

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz.out (-r summary option)
==
Application Operations Options Report
Options tracked are conn, open, get, put, close, callback, sub, subrq
==
pid: 24912 ApplicationName: amqsputc UserId: mqm referenced the following options by operations:
 Operation: MQXF_CLOSE
 Close Options: 0 Count: 1
 MQCO_NONE
 MQCO_IMMEDIATE
 Operation: MQXF_CONNX
 Connect Options: 320 Count: 1
 MQCNO_HANDLE_SHARE_BLOCK
 MQCNO_SHARED_BINDING
 Operation: MQXF_OPEN
 Open Options: 8208 Count: 1
 MQOO_OUTPUT
 MQOO_FAIL_IF_QUIESCING
 Operation: MQXF_PUT
 Put Options: 8260 Count: 5
 MQPMO_NO_SYNCPOINT
 MQPMO_NEW_MSG_ID
 MQPMO_FAIL_IF_QUIESCING

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsactz reports
 Remember, each API summary line had a 1LS= eye catcher text in it.

==
EYEC RecordNum Pid Tid Conn Channel Name Date Time Operation MQRC HObj

(ObjName)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_CONNX 0000 -
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_OPEN 0000 2

(TCZ.TEST1)

 amqsactz_1LS.out - Use the 1LS= to grep out all the API one line summary
records into a report.

grep 1LS= amqsactz.out > amqsactz_1LS.out

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz_1LS.out
 1 (RecordNum) 2 (Pid) 3 (Tid) 4 (Conn) 5 (Channel)

1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_CONNX 0000 -
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:29 MQXF_OPEN 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:31 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:31 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:32 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:33 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_PUT 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_CLOSE 0000 2
(TCZ.TEST1)
1LS= 0 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_DISC 0000 -
1LS= 1 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_BACK 0000 -
1LS= 1 24912 2606 53E3C453010AF420 CLIENT.TO.SERVER 2014-08-28 09:24:35 MQXF_DISC 0000 -

 6 (ObjName) NOTE: ObjName is being line wrapped, and is on same line as MQXF_CLOSE)

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT – amqsactz reports
 amqsactz_v.out – verbose report for each AAT record

amqsactz -v -b > amqsactz_v.out

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

AAT - amqsactz_v.out
MonitoringType: MQI Activity Trace RecordNum: 0
MQI Operation: 2
 Operation Id: MQXF_PUT
 ApplicationTid: 2606
 OperationDate: '2014-08-28'
 OperationTime: '09:24:31'
 High Res Time: 1409235871018640
 Completion Code: MQCC_OK
 Reason Code: 0
 Hobj: 2
 Put Options: 8260 1
 Msg length: 5
 Known_dest_count: 1
 Unknown_dest_count: 0
 Invalid_dest_count: 0
 Object_type: MQOT_Q
 Object_name: 'TCZ.TEST1‘ 2
 Object_Q_mgr_name: ''
 Resolved_Q_Name: 'TCZ.TEST1'
 Resolved_Q_mgr: 'SERVER01.MQTEST1'
 Resolved_local_Q_name: 'TCZ.TEST1'
 Resolved_local_Q_mgr: 'SERVER01.MQTEST1'
 Resolved_type: MQOT_Q
 Report Options: 0
 Msg_type: MQMT_DATAGRAM
 Expiry: -1 3
 Format_name: 'MQSTR'
 Priority: -1 4
 Persistence: 2
 Msg_id:
 00000000: 414D 5120 5345 5256 5245 3031 2E4D 5154 'AMQ SERVER01.MQT'
 00000010: 53E3 C453 020A F420 'S..S... '

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Linux Internals - /proc file system
 The /proc file system is a virtual file system that allows you access to internal

kernel data.

 /proc/pid/environ will show you the environment variables for a pid when the
process was created. NOTE: Later changes to the environment after the
process is created are not reflected here. See handout #8.

 /proc/pid/limits will show the user limits for a process. Later versions of the
Linux kernel (I believe 2.6.32) allow you to dynamically update the limits for a
running process. For example, you can increase the Max open files setting
for a running queue manager process. See handout #9.

 /proc/pid/fd will show the file descriptors for the process. You could see
which files that the process has open, or how many files are open. See
handout #10.

Capitalware's MQ Technical Conference v2.0.1.4

N

O

T

E

S

Linux Commands - strace
 strace will trace the system calls (i.e. open, write, etc.) that a process is

making. This can be helpful to see internally what a process is doing for
problem determination. You need the proper security to strace a process.
For processes running under the mqm id, you need to be the mqm id.

 Possible uses are:
1.strace the start up of the queue manager to see if an exit is being invoked.
2.strace an actively running process that seems to be hung.
3.strace a problematic MQ command.

 Helpful pieces to search for in the strace output:
1.file names
2.programs being executed
3.error messages being written

See handout #11.

Capitalware's MQ Technical Conference v2.0.1.4

Questions & Answers

	MQ Problem Determination with Tracing on Linux
	Introduction and Agenda
	MQ API Tracing on Linux - Overview
	MQ API Tracing – Example with amqsput
	Orientation in Reading an MQ API Trace
	Endianness – Little Endian (x86)
	Endianness – Big Endian (i.e. SPARC)
	MQ Tracing – Reading a Data Structure
	MQ Tracing – Reading an Options Field
	MQ Tracing – mqtrcfrmt tool in MH06
	MQ Tracing - AMQ16884.0.FMT2
	MQ Tracing – API Summary Trace
	MQ Tracing – Other Uses
	Slide 14
	Some Final MQ Tracing Notes
	Some Final MQ Tracing Notes – cont
	Application Activity Trace (AAT)
	AAT – Usage Notes
	AAT – Viewing the Data
	AAT – amqsputc example
	Slide 21
	AAT – amqsactz reports
	AAT - amqsactz.out
	Slide 24
	AAT - amqsactz.out (-r summary option)
	Slide 26
	Slide 27
	Slide 28
	AAT - amqsactz_1LS.out
	Slide 30
	AAT - amqsactz_v.out
	Linux Internals - /proc file system
	Linux Commands - strace
	Questions & Answers
	MQ Problem Determination with Tracing on Linux
	Introduction and Agenda
	MQ API Tracing on Linux - Overview
	MQ API Tracing – Example with amqsput
	Orientation in Reading an MQ API Trace
	Endianness – Little Endian (x86)
	Endianness – Big Endian (i.e. SPARC)
	MQ Tracing – Reading a Data Structure
	MQ Tracing – Reading an Options Field
	MQ Tracing – mqtrcfrmt tool in MH06
	MQ Tracing - AMQ16884.0.FMT2
	MQ Tracing – API Summary Trace
	MQ Tracing – Other Uses
	Slide 14
	Some Final MQ Tracing Notes
	Some Final MQ Tracing Notes – cont
	Application Activity Trace (AAT)
	AAT – Usage Notes
	AAT – Viewing the Data
	AAT – amqsputc example
	Slide 21
	AAT – amqsactz reports
	AAT - amqsactz.out
	Slide 24
	AAT - amqsactz.out (-r summary option)
	Slide 26
	Slide 27
	Slide 28
	AAT - amqsactz_1LS.out
	Slide 30
	AAT - amqsactz_v.out
	Linux Internals - /proc file system
	Linux Commands - strace
	Questions & Answers

