
1

Capitalware's MQ Technical Conference v2.0.1.3

WebSphereWebSphere MQ MQ

Publish/SubscribePublish/Subscribe

Part IPart I

Capitalware's MQ Technical Conference v2.0.1.3

Agenda

� Part I

� Introduction

� What is Pub/Sub?
� Pub/Sub in WebSphere MQ
� Pub/Sub and the WMQ API
� Topic Tree Design

� Part II

� WMQ Pub/Sub Administration
� WMQ Pub/Sub Operations
� Tricks of the Trade
� Topologies
� Using WMQ V7 Pub/Sub and WebSphere Application Server
� What’s New

2

Capitalware's MQ Technical Conference v2.0.1.3

What is What is

Publish/Subscribe?Publish/Subscribe?

Capitalware's MQ Technical Conference v2.0.1.3

This Slide Intentionally Left Blank

3

Capitalware's MQ Technical Conference v2.0.1.3

What is Publish/Subscribe?

Publish/Subscribe is a term used to define
an application model in which the provider
of some information is decoupled from the

consumers of that information.

� Providers of information are
called publishers

� Consumers of information are
called subscribers

� Providers of information
need have no knowledge
of consumers

� Consumers of information
need have no knowledge
of providers

� New providers/consumers can be added without disruption

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� Publish/subscribe systems have become very popular today as a way of distributing data between
applications. Such systems are especially useful where data supplied by a publisher is constantly
changing and a large number (or a variable number) of subscribers needs to be quickly updated
with the latest data. Perhaps the best example of where this is useful is in the distribution of stock
market data.

� In such systems, applications that are publishing the data do not need to know the identity or
location of the subscriber applications which will receive the data. Similarly, the subscribing
applications do not need to know the identity or location of the publishing application providing their
information. In this sense the providers and consumers are said to be loosely-coupled.

4

Capitalware's MQ Technical Conference v2.0.1.3

The classic example

� A "feed" provides a
continuous flow of
information which is
pushed to interested
parties

� Traders consume this
information and use it as
a basis for the buying and
selling stock

Traders

Stock
Feed

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� Perhaps the most-commonly quoted example of a Publish/Subscribe system is one which provides
stock-market information. Here a "feed" provides (publishes) a continuous flow of information
containing the latest stock prices. The latest stock prices are required by traders who need this
information in order to conduct trades. Traders register their interest in (subscribe to) particular
stock prices and receive updates as prices change. Traders can be added/removed without
disruption to the providers of the information who have no knowledge of who is receiving their
information.

� The terms "push" and "pull" are also becoming increasingly popular when describing the flow of
information between applications. If we concentrate on this example, traders receive new
information from the stock-feed as soon as a stock price changes. In this sense the information can
be thought of as being pushed directly to them. This pushing of information from provider to
consumer is one of the major differentiators between publish/subscribe and more conventional
systems. Our stock market example could have equally been designed in such a way that updated
stock prices only flowed to the traders when they specifically requested, or pulled them from a
central repository (server) of all stock prices. In such a system, the emphasis would instead be on
the traders, to request a refresh of their stock prices on a continual basis.

� In fact WebSphere MQ supports both modes of operation.

5

Capitalware's MQ Technical Conference v2.0.1.3

Loose-coupling with Publish/Subscribe

Few-to-many: Research, news tickers

Many-to-many: Prices and Quotes

Many-to-few: Orders

Topic

Topic

Topic

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� In the WebSphere MQ Publish/Subscribe model the only thing which connects publishing and
subscribing applications is the topic or subject which the publisher associates with his information.
Publishers and subscribers need only agree on the topic to become connected to one another.
Each different piece of information has its own topic associated with it. Subscribers nominate which
types of information they want to receive by subscribing to specific topics.

� Publishers of information are unaware of subscribers to the extent that they may publish
information even if there are no subscribing applications requiring it. Publishing and subscribing are
completely dynamic processes. New subscribers and new publishers can be added to the system
without disruption.

� With respect to a given topic, or piece of information, all possible combinations of
publishers/subscribers are possible, that is:

– information about each topic may be provided by a single or multiple publishing applications

– the information may be received and processed by one or more subscribing applications

� The number of publishers and subscribers connected by a single topic depends upon the type of
information which is flowing between them. As we will see later, WebSphere MQ supports both
state and event based information, or topics.

6

Capitalware's MQ Technical Conference v2.0.1.3

Publications and subscriptions
� Publishers provide information about specific topics by sending

publications to the queue manager
� MQI publishers use the MQPUT verb
� JMS publishers use the equivalent methods described by the JMS

specification

� Subscribers register subscriptions with the queue manager to

indicate their interest in information relating to specific topics.
� MQI subscribers use the MQSUB verb
� JMS subscribers use the equivalent methods described by the JMS

specification

� The queue manager forwards each publication it receives to all

subscribers with a subscription which matches the associated

topic

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� Just to recap, applications which provide information are called publishers. Applications which
consume information are called subscribers.

� A publisher publishes its information by putting a message to a topic using the MQPUT verb (or its
JMS equivalent).

� A subscriber specifies the topic it is interested in receiving information about by specifying it on the
MQSUB verb (or its JMS equivalent). A subscriber may make multiple subscriptions to the queue
manager.

� It is the job of the queue manager, or queue manager network if multiple queue managers have
been connected together, to ensure that all subscribing applications with matching subscriptions to
the topic being published on receive the publisher's message, known as a publication.

� There is a separate presentation about publish/subscribe in a multiple queue manager scenario.

7

Capitalware's MQ Technical Conference v2.0.1.3

Types of publications

� Events

� Continuing succession of logically independent messages, for example:

� trades

� customer at a supermarket checkout

� Subscribers receive as available

� State

� Information that is being regularly updated or replaced, for example:

� stock prices

� furnace temperatures

� Messaging provider retains a copy of the most recent publication

� Subscribers may receive immediately or check at their own initiative

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� When a publish/subscribe system is being designed it is important to decide whether
the information being published on each topic is either state or event related.

� Examples of this type of information are:

– a stock trade

– a customer purchasing groceries at a supermarket checkout

� Event publications are usually independent from one another. They usually indicate
that some further action or processing is needed. A subscriber missing an event may
be disastrous and generally subscriptions to event publications all need to be in place
before any events are published. There may be more than one publisher of event
publications for a given topic.

� State publications usually contain information that is being updated at regular intervals.
If a subscriber misses a state publication then generally it isn't a problem since an
updated view of the state will about to be published again. The queue manager may
also be instructed to retain the last copy of a state publication. This can be sent to new
subscribers to that state topic rather than letting them wait for the information to be
published again. Usually there is only a single publisher per state topic.

� Examples of this type of information are:

– a stock price

– the temperature of a furnace

8

Capitalware's MQ Technical Conference v2.0.1.3

Publish/Subscribe inPublish/Subscribe in

WebSphereWebSphere MQ MQ

Capitalware's MQ Technical Conference v2.0.1.3

This Slide Intentionally Left Blank

9

Capitalware's MQ Technical Conference v2.0.1.3

History of MQ Publish/Subscribe
� MQSeries V5.0

� MQSeries Publish/Subscribe introduced as SupportPac MA0C

� WebSphere MQ V5.3 fixpack 8
� MQ Publish/Subscribe shipped as part of the product on platforms already supported

� WebSphere MQ V6
� MQ Publish/Subscribe fully integrated into the product on all distributed platforms

� WebSphere MQ V7
� Publish/Subscribe implementation completely rewritten
� Previous Pub/Sub functionality retained

� Renamed “Queued Publish/Subscribe Interface”

� Needed for coexistence with MQ V6 applications

� Enhanced to support RFH2 Publish/Subscribe messages for WMB V6 applications

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� Publish/Subscribe has been a feature of WebSphere MQ for a very long time. It was originally
introduced with MQSeries V5.0 as a product extension (SupportPac MA0C) in 1998 – 15 years
ago!

� It was supported for several years as a product extension, but as of WebSphere MQ V5.3 fixpack 8
(2004) the components were shipped along with the product, for those platforms where MA0C was
already supported.

� As of WebSphere MQ V6 (2005) the Publish/Subscribe components were fully integrated into the
product on all distributed platforms

� WebSphere MQ V7 (2008) changed the game completely as far as the Publish/Subscribe
implementation was concerned. The Pub/Sub broker as a separate component was gone, with the
functionality directly incorporated into the queue manager. This meant that pub/sub was now
directly available on the zOS platform, where previously it had not been. Concepts such as stream
queues were now gone, the API was changed from being message-based to a callable API, etc.
But we could not abandon the many customers that were using the previous implementation. So a
form of this Pub/Sub functionality was retained, in the form of what was called the “Queued
Publish/Subscribe Interface”. This was needed for coexistence with MQ V6 (“RFH1”) applications.
But it was also enhanced to also support WebSphere Message Broker (“RFH2”) Publish/Subscribe
as well.

� This presentation is an in-depth look at all aspects of WebSphere MQ Publish/Subscribe as it
exists today, focusing largely in three areas:

– Topic tree administration control

– No code change Publish/Subscribe

– Application Monitoring

10

Capitalware's MQ Technical Conference v2.0.1.3

Pub/Sub Basics in MQ V7
� TOPIC objects

� Basic definition:

– DEF TOPIC(STOCK) TOPICSTR(/stock/IBM)

� More attributes covered later

� SYSTEM.DEFAULT.TOPIC

� SYSTEM.BASE.TOPIC

� MQOPEN (+ MQPUT)
� Key parameters:

� TOPIC object

� Topic string
� (Later referred to as PUB)

� MQSUB (+ MQGET)
� Key parameters:

� TOPIC object

� Topic string

� Subscriber queue
� (Later referred to as SUB)

MQPUT

MQSUB

MQSUB

MQSUB

MQSUB

MQSUB

MQSUB

MQSUB

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� WebSphere MQ v7 now includes pub/sub built into the API. This was done to replace the pub/sub
function offered in WebSphere MQ v6 which was built on an MQRFH1 message interface. It
replaced as well the pub/sub function offered in WebSphere Message Broker V6.x, which was built
on an MQRFH2 message interface. Both WebSphere MQ and WebSphere Message Broker as of
version 7 share a common Publish/Subscribe implementation.

� You’ll notice significant differences between the V6 and V7 pub/sub implementations. For example,
on the publishing side there is no queue; WebSphere MQ introduces a new object called a TOPIC
object, and new API function to allow publishing directly to that object, as opposed to using a
stream queue.

� In WebSphere MQ v6 for z/OS there was no pub/sub built into the product. WebSphere MQ v7
introduces pub/sub to the z/OS platform, which previously has no support for pub/sub.

• The new pub/sub available in v7 is easier to use and performs better than v6 pub/sub.
� In this presentation we will cover the following main areas:-

– Topic tree administration control

– No code change Publish/Subscribe

– Application Monitoring

11

Capitalware's MQ Technical Conference v2.0.1.3

Publish/Subscribe in WebSphere MQ

MQSUB
‘Price/Fruit/+’

MQGET

MQOPEN
‘Price/Fruit/Apples’

MQPUT

Create TOPIC
objects

Configure attributes

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(FRUIT.ANCHOR)

TOPICSTR(‘Price/Fruit’)

Topic Status +
Subscription Status

Display Connections
and handles

Topic Tree

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� The queue manager holds a view of all the topic strings you are using in a hierarchical construct
known as the topic tree (the structure of which is described in more detail later). This topic tree is
the central control point for all publish/subscribe. As a user you will interact with the topic tree in
several different ways.

– You can configure the behavior of the topic tree by defining topic objects (the purpose of
which will be explained in detail shortly), changing attributes on them to suit your needs. Of
course you only need to do this if you want to change the default behavior. You may not
need any topic objects – we will look at this in more detail later.

– You can interface with the topic tree programmatically as a subscriber using MQSUB and
as a publisher using MQOPEN and MQPUT (or their equivalents in other APIs such as JMS
or XMS).

– You can monitor the use of your topic tree by such applications using the Topic status
command, the Subscription status command and the commands to display connections and
their handles.

12

Capitalware's MQ Technical Conference v2.0.1.3

Publish/Subscribe in Publish/Subscribe in

the WMQ APIthe WMQ API

Capitalware's MQ Technical Conference v2.0.1.3

This Slide Intentionally Left Blank

13

Capitalware's MQ Technical Conference v2.0.1.3

Topic strings and topic tree

Price/Fruit/Apples

Price/Fruit/Oranges

Price/Vegetables/Potatoes

Price/Vegetables/Onions

Price

Fruit

Apples Oranges

Vegetables

Potatoes Onions

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� Topic strings can be any characters you choose. You can, and should, add structure to your topic strings
using the ‘/’ character. This produces a topic tree with a hierarchical structure, as the example on this foil
shows. Although this hierarchical topic tree was created by the use of the topic strings shown, we
generally picture it as a tree such as this.

� There are some special characters, apart from the ‘/’ character that you should avoid in your topic strings.
These are ‘#’, ‘+’, ‘*’ and ‘?’. We will look at these in more detail later when we discuss wildcards.

� An application that needs to publish a message about a specific topic can do so by opening that topic and
putting a message to it. There is very little difference between an application that opens a queue then puts
a message to it, and one that opens a topic to put a message to it, so the application code should look
very familiar to you.

� This similarity in the programming model also allows us to turn a point-to-point application into a
publish/subscribe application without making any code changes at all. We will look at this in the
administration presentation.

� Since the object opened for output (MQOO_OUTPUT) is a topic and not a queue, the queue manager
knows to publish the message to all interested parties rather than placing it on a specific queue.

� Let’s look at the MQOD (Object Descriptor) in more detail. You will be familiar with fields such as the
ObjectType and ObjectName that you use today when opening a queue. There are some differences to
the way you use these fields if you are opening a topic rather than a queue.

� As you might guess, the ObjectType where you would place the value MQOT_Q when opening a queue,
will instead have the value MQOT_TOPIC when you are opening a topic in order to publish a message.

� We said earlier that if you wish to use publish/subscribe with WebSphere MQ V7 you do not require any
topic objects to be defined. You can in fact go right ahead and use a topic string directly in your
application. You do this by placing your topic string in the ObjectString field.

� We have not mentioned any specific put-message options here. We will look at some specific publishing
ones later, but almost all those that you know for point-to-point application programming are still
applicable.

14

Capitalware's MQ Technical Conference v2.0.1.3

Publishing Application
� MQOPEN a topic

� MQOD describes a topic to publish to
� ObjectType

� MQOT_Q for point-to-point

� MQOT_TOPIC for publish
� ObjectString/ObjectName

� MQPUT a message

OpnOpts = MQOO_OUTPUT

| MQOO_FAIL_IF_QUIESCING;

MQOPEN(hConn,

&ObjDesc,

OpnOpts,

&hObj,

&CompCode,

&Reason);

MQPUT (hConn,

hObj,

&MsgDesc,

&pmo,

strlen(pBuffer),

pBuffer,

&CompCode,

&Reason);

MQOD ObjDesc = {MQOD_DEFAULT};

ObjDesc.ObjectType = MQOT_TOPIC;

ObjDesc.Version = MQOD_VERSION_4;

ObjDesc.ObjectString.VSPtr = “Price/Fruit/Apples”;

ObjDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� An application that needs to publish a message about a specific topic can do so by opening that
topic and putting a message to it. There is very little difference between an application that opens a
queue then puts a message to it, and one that opens a topic to put a message to it, so the
application code should look very familiar to you.

� This similarity in the programming model also allows us to turn a point-to-point application into a
publish/subscribe application without making any code changes at all. We will look at this in the
administration presentation.

� Since the object opened for output (MQOO_OUTPUT) is a topic and not a queue, the queue
manager knows to publish the message to all interested parties rather than placing it on a specific
queue.

� Let’s look at the MQOD (Object Descriptor) in more detail. You will be familiar with fields such as
the ObjectType and ObjectName that you use today when opening a queue. There are some
differences to the way you use these fields if you are opening a topic rather than a queue.

� As you might guess, the ObjectType where you would place the value MQOT_Q when opening a
queue, will instead have the value MQOT_TOPIC when you are opening a topic in order to publish
a message.

� We said earlier that if you wish to use publish/subscribe with WebSphere MQ V7 you do not require
any topic objects to be defined. You can in fact go right ahead and use a topic string directly in your
application. You do this by placing your topic string in the ObjectString field.

� We have not mentioned any specific put-message options here. We will look at some specific
publishing ones later, but almost all those that you know for point-to-point application programming
are still applicable.

15

Capitalware's MQ Technical Conference v2.0.1.3

Topic Objects

� Not necessary for Publish/Subscribe

� Provide an administrative control point for your
topic tree
�Configuration attributes
�Security profiles
�Topic tree isolation MY.TOPIC.OBJECT

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� Topic objects are a new construct in WebSphere MQ V7. They can be used to control the behavior
of your topic tree.

� You do not need to define any topic objects in order to use Publish/Subscribe with WebSphere MQ
V7, however you may want to define some if you need to configure the topic tree to use non-default
attributes; if you want to apply different security profiles to parts of your topic tree; or if you want to
isolate your applications from administrative changes to the topic tree – rather like you do when you
use remote queue and alias queue definitions.

� We will look at how applications might use topic objects instead of (or as well as) topic strings and
also how you define these objects and what some of their attributes mean.

16

Capitalware's MQ Technical Conference v2.0.1.3

Topic tree isolation

Price

Apples Oranges

strncpy(ObjDesc.ObjectName,

“FRUIT.ANCHOR”,

MQ_TOPIC_NAME_LENGTH);

ObjDesc.ObjectString.VSPtr = “Apples”;

ObjDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;

Price

Discount

Sandusky

Market Stalls

FRUIT.
ANCHOR

Fruit

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(FRUIT.ANCHOR)
TOPICSTR(‘Price/Fruit’)

DEFINE TOPIC(FRUIT.ANCHOR)
TOPICSTR(‘Market Stalls/Sandusky/Discount/Price/Fruit’)

?

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� When developing a Publish/subscribe application you may not yet have fully designed your topic
string hierarchy structure. You may know that your application needs to deal with the price of fruit
(as in our example) and that your topic strings will all end with ‘...Fruit/Apples’ or ‘...Fruit/Oranges’
but you do not yet know whether the full topic string will simply be ‘Price/Fruit/...’ or
‘Locations/Sandusky/Discount/Price/Fruit...’ so you wish to avoid hard-coding into your application
a topic string that may change.

� You can isolate your application from changes such as this, by providing an anchor point in the
topic tree as a topic object and the portion of the topic string that your application is designing to be
appended to the end.

� This isolates you application development from changes in the design of the full topic tree structure.
� We do this by putting the anchor point topic object name in the MQOD.ObjectName and putting the

portion of the topic string that goes on the end in the MQOD.ObjectString field. By doing this the
queue manager will look up the topic object to find the associated topic string and then concatenate
the two parts together to form your full topic string.

17

Capitalware's MQ Technical Conference v2.0.1.3

Subscribing Application

� MQSUB verb

� Subscription Descriptor (MQSD)
describes the topic
� MQSD.ObjectString
� MQSD.ObjectName

� Consume publications from the
returned hObj
� when MQSO_MANAGED used

MQSUB (hConn,

&SubDesc,

&hObj,

&hSub,

&CompCode,

&Reason);

MQGET (hConn,

hObj,

&MsgDesc,

&gmo,

strlen(pBuffer),

pBuffer,

&DataLength,

&CompCode,

&Reason);

MQSD SubDesc = {MQSD_DEFAULT};

SubDesc.ObjectString.VSPtr = “Price/Fruit/Apples”;

SubDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;

SubDesc.Options = MQSO_CREATE

| MQSO_MANAGED

| MQSO_FAIL_IF_QUIESCING;

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� An application that wants to register an interest in information about a certain topic needs to
‘subscribe’ to that topic. This can be done using the MQ API verb MQSUB. MQSUB can be thought
of rather like MQOPEN. It details the resource you wish to use, and it is the point where security
checks are done.

� The main structure that you need to be familiar with when using MQSUB is the MQSD (subscription
descriptor). This structure is where you define the topic you are interested in; the options to used
when making a subscription; and any other interesting changes to the way the subscription is
made.

� When specifying the topic string you wish to subscribe for, you have the same mechanisms
available to you that we already discussed on the foil about a publishing application. You can
provide the whole topic string, or an anchoring topic object which defines a certain point in the topic
tree and then the remaining part of the topic string to be appended to that which the topic object
represents.

� Once you have successfully done an MQSUB, you can start to consume publication messages that
are now being sent to you.

18

Capitalware's MQ Technical Conference v2.0.1.3

Subscription operation options
� Operation – choose at least one of

� MQSO_CREATE
� MQSO_RESUME
� MQSO_ALTER

� Combining them
� MQSO_CREATE + MQSO_RESUME

� Avoids MQRC_SUB_ALREADY_EXISTS

� MQSO_CREATE + MQSO_ALTER

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� We’ve already seen examples of MQSO_CREATE. There are two other options, MQSO_RESUME
and MQSO_ALTER. You must choose at least one of these.

� MQSO_RESUME can be used to get hold of a previously made subscription – a durable one – to
obtain both the handle to the subscription for later closure, and the handle to the managed
destination if that mode of operation was chosen.

� MQSO_ALTER also gives you back the handle to a previously made subscription, but at the same
time alters various properties on the MQSD to new values that you provide.

� These uses are probably fairly obvious, but additionally, you can combine these options. If you use
MQSO_CREATE + MQSO_RESUME, this will create a subscription if it doesn’t exist and resume it
if it does, thus avoiding the need to code your application to check for
MQRC_SUB_ALREADY_EXISTS if it’s not the first time your application has run. You can similarly
combine MQSO_CREATE + MQSO_ALTER.

19

Capitalware's MQ Technical Conference v2.0.1.3

Other attributes of a subscription

SubDesc.ObjectString.VSPtr = “Price/Fruit/+”;

SubDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;

SubDesc.SubName.VSPtr = “Selling Fruit”;

SubDesc.SubName.VSLength = MQVS_NULL_TERMINATED;

SubDesc.SubExpiry = 3000;

SubDesc.Options = MQSO_CREATE

| MQSO_DURABLE

| MQSO_MANAGED

| MQSO_WILDCARD_TOPIC

| MQSO_FAIL_IF_QUIESCING;

Durable

Whether a subscription

lives beyond the

application connection

Sub Destination

Where messages are
stored – provided hObj by

app or returned from
queue manager

Wildcard Scheme

MQ V6 style - * and ?

MB V6 style - # and +

ExpiryAutomatically remove

subscriptions after

certain period of time

60¢

80¢

50¢

Capitalware's MQ Technical Conference v2.0.1.3

This Slide Intentionally Left Blank

20

Capitalware's MQ Technical Conference v2.0.1.3

Durability of Subscriptions
� Non-durable by default

� Removed when application disconnects

� Can be made durably
� Still exists while application is off-line

� Durable vs Non-durable

Non-durableDon’t waste resources when app is off-line

DurablePublications must be stored while app is off-line

Non-durableCan tolerate gaps in publication stream

DurableMust not miss a beat

ChooseApplication Requirement

� Be Aware: Persistent messages
delivered to a non-durable
subscription are not recoverable!
� Still have Persistent flag turned on
� But not written to the MQ Log

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Durability of Subscriptions - Notes

� By default, subscriptions are made non-durably. This means that when the application disconnects
from the queue manager, the subscription is removed and no more publications are sent to that
subscription.

� You can also make a subscription durable. This means that the subscription continues to exist even
while the application is disconnected form the queue manager; publications that satisfy the
subscription continue to be delivered to the subscription’s destination and are stored there until the
subscribing application reconnects and picks them up.

� Whether you use a durable subscription or a non-durable subscription depends on the
requirements of your application.

21

Capitalware's MQ Technical Conference v2.0.1.3

API for durable subscriptions
� MQSO_DURABLE

� Provide a subscription
name (MQSD.SubName)

� Remove with
MQCO_REMOVE_SUB
on MQCLOSE

SubDesc.SubName.VSPtr = “Selling Apples”;

SubDesc.SubName.VSLength = MQVS_NULL_TERMINATED;

SubDesc.Options = MQSO_CREATE

| MQSO_DURABLE

| MQSO_MANAGED

| MQSO_FAIL_IF_QUIESCING;

MQSUB (hConn,

&SubDesc,

&hObj,

&hSub,

&CompCode,

&Reason);

if (hSub != MQHO_UNUSABLE_HOBJ)

{

MQCLOSE(hConn,

&hSub,

MQCO_REMOVE_SUB,

&CompCode,

&Reason);

}

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

API for durable subscriptions - Notes

� To make a durable subscription you must use the MQSO_DURABLE option on MQSUB.

� In order for a subscription to be durable you must also provide it with a subscription name. This is
used if you need to refer to the subscription later – for example when you use the
MQSO_RESUME option on MQSUB to reacquire a handle to the subscription.

� If you want to remove a durable subscription you do so by explicitly closing the handle to the
subscription using the MQCO_REMOVE_SUB option on MQCLOSE.

22

Capitalware's MQ Technical Conference v2.0.1.3

Subscription Destinations
� MQSO_MANAGED

� Queue manager returns hObj

� Omit MQSO_MANAGED

� Provide queue manager with hObj
of queue desired

� Can have many subscriptions
sharing the same queue

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Subscription Destinations - Notes

� So far we have seen examples of MQSUB using the option MQSO_MANAGED. This is the option
to use when the application wishes the queue manager to look after the storage of publication
messages. On return from the MQSUB call your application is given two handles, an hSub and an
hObj. hSub is the handle to the subscription which, as we have just seen, can be used to
MQCLOSE the subscription when you are finished with it. The hObj is the handle which you can
consume publications from, i.e. using MQGET.

� You can also request that the queue manager place the messages on a specific queue instead. To
do this, you provide the MQSUB call with an hObj on input, so you must first MQOPEN the queue
you wish to use, provide the resultant handle to the MQSUB and then you can consume from that
queue.

23

Capitalware's MQ Technical Conference v2.0.1.3

Wildcards
� Character based

� As used by WebSphere MQ V6
� ‘*’ – matches many characters
� ‘?’ – matches single character

� MQSO_WILDCARD_CHAR

� Topic element based
� As used by WebSphere MB
� ‘#’ – matches many elements
� ‘+’ – matches single element

� MQSO_WILDCARD_TOPIC

� Default scheme

Price

Fruit

Apples Banana

Vegetables

Potatoes

Price/#Price/Fruit/+

60¢
60¢

50¢

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� So far we have only seen examples of using MQSUB to subscribe to an explicit topic string.
� If you design your topic structure well, your applications can make use of wildcarded subscriptions

and thus not need any redesign work as new topic strings are created that did not previously exist
in the topic tree.

� There are two different wildcard schemes supported in WebSphere MQ V7.
� A character based wildcard scheme which copies the way the queued publish/subscribe interface

that existed in WebSphere MQ V6 operated. This uses ‘*’ to replace many characters and ‘?’ to
replace one character.

� A topic element based wildcard scheme which copies the way WebSphere Message Broker
operated. This uses ‘#’ to replace many elements (an element is considered to be the text between
‘/’ characters) and ‘+’ to replace a single element.

� You can choose to use either scheme in your subscriptions using the options
MQSO_WILDCARD_CHAR or MQSO_WILDCARD_TOPIC. The default is
MQSO_WILDCARD_TOPIC.

24

Capitalware's MQ Technical Conference v2.0.1.3

Subscription expiration
� Removal of subscriptions

� Connection loss with a non-durable
� MQCLOSE with MQCO_REMOVE_SUB
� Administrative DELETE SUB command
� Expiry

� Set expiry at subscription create time

SubDesc.ObjectString.VSPtr = “Price/Fruit/Apples”;

SubDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;

SubDesc.SubExpiry = 3000;

SubDesc.Options = MQSO_CREATE

| MQSO_FAIL_IF_QUIESCING;

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

Subscription expiration - Notes

� We have already seen two different ways in which subscriptions can be
removed from the queue manager:-

– Connection loss for non-durable subscriptions

– Administrative DELETE SUB command (see later)

– MQCLOSE with MQCO_REMOVE_SUB

� There is one other way that a subscription can be removed and this is expiry.

� When a subscription is made you can set the desired expiry of the
subscription and after that interval has passed the subscription will be
removed from the queue manager.

25

Capitalware's MQ Technical Conference v2.0.1.3

Publication Selection

Fruit

Apples Oranges

Price/Fruit/Oranges

Origin=‘Florida’

Florida

Oranges

California

Oranges

SubDesc.ObjectString.VSPtr = “Price/Fruit/Orange”;

SubDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;

SubDesc.SelectionString.VSPtr = “Origin=‘Florida’”;

SubDesc.SelectionString.VSLength = MQVS_NULL_TERMINATED;

SubDesc.Options = MQSO_CREATE

| MQSO_FAIL_IF_QUIESCING;

50¢

Juicer

50¢

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� So far we have only looked at application’s subscribing to all the messages on a particular topic
string. Your application may wish to subscribe more specifically than that. Let’s continue our
example of fruit prices with a new seller in the market-place specialising in East Coast Produce.
This seller only wants to subscribe to the prices of Florida oranges, but no other oranges.

� The application publishing the messages has added several pieces of meta data about the
messages as message properties, such as the Origin of this produce and the name of the Supplier.
Any of these properties can be selected upon at subscribe time.

� This means that only those publications matching both the topic string and the selection criteria are
ever delivered to the subscriber.

� How to set and inquire upon message properties is outside the scope of this presentation.

26

Capitalware's MQ Technical Conference v2.0.1.3

Topics verses Selectors – When to use which?

� Topics and selectors are not mutually exclusive
� It’s possible to combine a topic hierarchy with message properties and selection strings to

best fit the usage pattern

� In general, topic strings give better performance than message properties and
selectors

� However, having excessive numbers of topic strings can impact performance

� Can address this by using selectors where normally a subscriber may not require the
further selection criteria but occasionally they may
� e.g. Don’t encode the price into the topic structure for the rare occasion where a

subscriber wants to know when it reaches $100

� Instead, add it as a message property and allow a selector to be used

� Selectors are not flowed around a multiple queue manager publish/subscribe topology
� Selector parsing is only performed on the queue managers where the subscriptions exist

� Goal should be to strike a balance between topic tree complexity and use of selectors

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� Whether to use Topics or Selectors is not an either/or choice.
� It is possible to combine a topic hierarchy with message properties and selection strings to best fit

the usage pattern
� Considerations to take into account:

– Generally speaking, topic strings give better performance than message properties and
selectors

– However, having excessive numbers of topic strings can impact performance

� So the goal should be to strike a balance between topic tree complexity and use of selectors.

– One approach is to use message properties and selectors for those cases where normally a
subscriber may not require the further selection criteria, but on occasion they may. For
example, don’t encode the price into the topic structure for the rare occasion where a
subscriber wants to know when it reaches $100. In such a case you would be better off by
having the publisher include this value as a message property, and the subscribers can
choose to use a selector for those limited cases where filtering on this value would benefit
them.

� With pub/sub hierarchies or clusters, it is useful to note that selectors are not flowed around the
entire multiple queue manager publish/subscribe topology; selector parsing is only performed on
the queue managers where the subscriptions exist.

27

Capitalware's MQ Technical Conference v2.0.1.3

Retained Publications

Price

Fruit

Apples Oranges

Vegetables

Potatoes Onions

Price/Fruit/+

Price/#

Price/Vegetables/Onions

pmo.Options |= MQPMO_RETAIN

60¢ 50¢ 50¢ 25¢

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� Earlier we described the concept of event information and state information. In order to provide
state information, that is a publication which is held as the last known state of something, you can
tell the queue manager to retain that publication. This is done using the MQPMO_RETAIN option
when putting the message.

� A subscriber that comes in later would have to wait until the next time an event occurred if we didn’t
use this mechanism. With the use of retained publications our new subscriber is immediately given
the last known information on this topic.

� For some applications it may be important to only be sent new information. Old information such as
a retained publication may be useless – so you can turn off this behavior using the
MQSO_NEW_PUBLICATIONS_ONLY option on your MQSUB call.

28

Capitalware's MQ Technical Conference v2.0.1.3

Request a Publication

/* Topic: ‘Price/#’ */

MQSUB (hConn,

&SubDesc,

&hObj,

&hSub,

&CompCode,

&Reason);

MQSUBRQ(hConn,

hSub,

MQSR_ACTION_PUBLICATION,

&SubRqOpts,

&CompCode,

&Reason);

MQGET (...

Price/#

60¢

50¢

50¢

25¢
MQSRO.NumPubs = 4

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� If you are only connected to the system from time to time, or if regular updates are not what you
require, you can choose to only get publications when you request them.

� You make a subscription in the normal way, additionally using the
MQSO_PUBLICATIONS_ONLY_REQUEST option. Then whenever you want the latest state, you
make a request for it using the MQSUBRQ verb. This will just send you the latest publication on the
topic you have subscribed on.

� If you have a wildcarded subscription you will get the latest publication on each topic string that
matches your subscription. The field MQSRO.NumPubs will detail how many publications have
been sent to you.

29

Capitalware's MQ Technical Conference v2.0.1.3

pmo.Options |= MQPMO_WARN_IF_NO_SUBS_MATCHED

Question: What if there are no Subscribers?

MQOPEN
‘Price/Fruit/Apples’

MQPUT

MQRC_NO_SUBS_MATCHED

� Standard operation for publication is to give no
indication where there were no subscribers

� This is reasonable, given the pub/sub model
where publishers and subscribers are
disconnected and thus there is not suppose to
be any awareness between publishers and
subscribers

� But this behavior may not be desirable in all
cases

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� With publish/subscribe, standard operation of Publish is to give no indication to the publishing application if there
were no subscribers interested in the topic on which it is publishing. In such a case, the message will simply be
discarded, without notification to the publisher that this has occurred. This is not unreasonable, given that with the
pub/sub model there is not suppose to be any awareness between publishers and subscribers

� But with enterprise messaging, there may be cases where this behavior is undesirable. You may have publications
where the expectation is that there will always be at least one subscriber, and the publisher will want to take some
action to preserve the data in such a situation. But how will it know?

� WebSphere MQ 7.0.1 delivers a new feature to address this. A new PMO option
[MQPMO_WARN_IF_NO_SUBS_MATCHED], can be set to indicate that the publisher wants to be notified if
there are no subscribers registered at the time the MQPut is issued.

� If this option is specified and the message is not delivered to any subscription, a CompCode of
[MQCC_WARNING] is returned with the Reason Code [MQRC_NO_SUBS_MATCHED]

� Note that this option is only valid when putting to a topic, so it is not available is the Queued Pub/Sub interface is
being used by the publisher. It also is not returned if the publisher is using the JMS API, as the JMS specification
does not support this.

� For customers using WebSphere Message Broker (now IBM Integration Bus), the Publication node was extended
in V7 to exploit this feature, enabling the message flow to optionally drive exception logic in a flow if a message is
published but there are no matching subscribers.

30

Capitalware's MQ Technical Conference v2.0.1.3

MQOPEN
‘Price/Fruit/Apples’

MQPUT

Question: What if a failure occurs on message delivery?

TOPIC attributes

PMSGDLV
NPMSGDLV

MQSUB
‘Price/Fruit/+’

MQGET

MQSUB
‘Price/Fruit/+’

MQGET

MQSUB
‘Price/Fruit/+’
MQSO_

DURABLE

MQGET FULL

MSGDLV behavior

ALL If one failure – no-one gets it

ALLDUR Any failure to a durable subscriber –
no-one gets it

ALLAVAIL Failures don’t affect the delivery to
subscribers who can accept it

MQRC_PUBLICATION_FAILURE

TOPIC attribute defaults

PMSGDLV (ALLDUR)
NPMSGDLV (ALLAVAIL)

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� If a publication satisfies a number of subscribers and the queue manager is unable to deliver the
publication to one of the subscribers, say because its destination queue is full (and additionally the
message cannot be placed on the Dead Letter Queue (DLQ) either because it is not being used or
because it is out of commission for some reason) – what happens? Well, there are essentially three
choices and these are configured on the topic in question using the PMSGDLV and NPMSGDLV
attributes – so different behavior can be configured for persistent and non-persistent messages on
the topic.

� You can configure your system so that all subscribers must be delivered the publication or none of
them get it. This is the value ALL. If one of the subscribers cannot accept it as in our diagram, the
MQPUT fails with MQRC_PUBLICATION_FAILURE.

� You can configure your system so that all durable subscribers must be delivered the publication or
none of them get it. This is the value ALLDUR. If one of the durable subscribers cannot accept it as
in our diagram, the MQPUT fails, again with MQRC_PUBLICATION_FAILURE.

� You can configure your system so that no failure of one specific subscriber has any affect on the
delivery of the publication to other subscribers. This is the value ALLAVAIL.

31

Capitalware's MQ Technical Conference v2.0.1.3

Questions?

Capitalware's MQ Technical Conference v2.0.1.3

This Slide Intentionally Left Blank

32

Capitalware's MQ Technical Conference v2.0.1.3

Topic Tree Design Topic Tree Design

ConsiderationsConsiderations

Capitalware's MQ Technical Conference v2.0.1.3

Why worry about the size and shape of the topic tree?

� Simpler administration!
� Fewer topic objects and topic nodes mean less to worry about

� Better performance!
� A well-thought-out structure can have a large impact on performance

� MQ can efficiently scale to tens or hundreds of
thousands of topic nodes
� But certain topic designs can cause MQ pain, which impacts users

33

Capitalware's MQ Technical Conference v2.0.1.3

Designing Your Topic Tree Structure
� No “standard” way of designing the shape of a topic tree

� Depends on the specific data

� General recommendation is to describe the high level / broad
information, then break this down into finer detail
� Start by looking at the “big picture”
� Topic Tree structure likely to evolve over time

� Can combine topics with Selectors or Content Filters
� Both can have an impact on performance

� Topic objects can be used for isolation of a
subset of the tree

� If using distributed pub/sub avoid
clustering the root node – consider using
high level Topics such as “/global” and
“/local”

Capitalware's MQ Technical Conference v2.0.1.3

Considerations for Designing Your Topic Tree
If possible, try to avoid

� A shallow topic tree
� StockPriceForIBM
� StockPriceForABC
� StockPriceForXYZ

� An unnecessarily deep topic tree
� This/Is/The/Stock/Price/For/IBM
� Where one topic node in the tree only points (and will only point) to a single topic node within the

topic tree

� Don’t capture structure within the tree that you will never be interested in and has no purpose

� Remember that Topic Objects can be used to “expand” the tree structure

� Mandating multi-level wildcards (#) in the middle of a topic string unnecessarily
� This can have a performance implication

� Different types of information on the same topic string
� Mandating the use of Selectors or Content Filters, or client-side filtering

� StockPriceForIBMAndXYZ

� Best way to appreciate this is to understand what’s happening internally…

34

Capitalware's MQ Technical Conference v2.0.1.3

What happens when a new Topic is added to the tree?
� When an application opens a topic string…

� The topic string is looked up in a hash table

� The more topic strings the bigger the hash table

� If found, job done

� If not found
� Topic string is stripped down to its ‘/’ delimited parts
� Every new topic node that is referenced in the topic string is dynamically created
� Every new new node is linked to its parent
� For every topic node created, that branch of the topic tree is walked backwards to discover

� The node’s configuration

� The set of wildcard subscriptions that may match it

� The more topic nodes the more memory consumed by the queue manager
� Very broad topic trees put stress on certain parent topic nodes
� Very deep topic trees add unnecessary topic nodes and levels to the tree that must be

walked

� Very many topics can strain the memory resources of the system

� Subscriptions with # wildcards at the start or middle of the topic string put them higher up
the tree - means they will need to be checked for almost all topic nodes being created

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� First, it makes your administration simpler! The less topic objects and topic nodes there are, the less there
are to worry about.

� Second, MQ can efficiently scale to tens or hundreds of thousands of topic nodes but certain topic designs
can cause MQ pain, which impacts the user.

– (Future improvements take that scaling even further)

� It’s best to understand what’s happening internally…
� When an application opens a topic string…

– The topic string is looked up in a hash table

– The more topic strings the bigger the hash table

– If found, job done

– If the topic string is not found the topic string is stripped down to its ‘/’ delimited parts and every new topic
node that is referenced in the topic string is dynamically created. Each new node is linked to its parent.

– For every topic node created, that branch of the topic tree is walked backwards to discover

– The node’s configuration

– The set of wildcard subscriptions that may match it

– The more topic nodes the more memory consumed by the queue manager

� For this reason:

– Very broad topic trees put stress on certain parent topic nodes

– Very deep topic trees add unnecessary topic nodes and levels of the tree that need to be walked.

– Very many topics can put a strain on memory resources of the system

– Subscriptions with # wildcards at the start or middle of the topic string put them higher up the tree and
can therefore mean they will need to be checked for almost all topic nodes being created

35

Capitalware's MQ Technical Conference v2.0.1.3

What happens when an application publishes to a topic string?

� When an application publishes a message on a topic string…
� For every subscription associated with the topic node…

� A decision is made to deliver a copy of the message or not

� If the subscription specified a selector, the message properties are parsed to
check for a match

� Consider this example:
� Consider a single topic with a thousand subscriptions

� Each publication will result in a thousand checks

� Consider a hundred topics, each with ten subscriptions, all with selectors

� Each publication will result in ten checks

� Both would result in the same number of publications

� But the latter with a lot less work

Capitalware's MQ Technical Conference v2.0.1.3

Other processing affected by the size and shape
of the tree

� Various housekeeping tasks run in the background
� These are also affected by the size and shape of the topic tree

� Periodically the topic nodes are scanned to see if they are still “in use”
� A topic tree node is considered to NOT be in use if

� It is a leaf topic that is not represented by a Topic Object

� It has no publishers or subscriptions currently directly attached

– Prior to 7.0.1.8 wildcard subscriptions also were counted

� It has not been used for a period of time (minimum 30 minutes by default)

� Nodes that are considered to be not “in use” are deleted and unlinked
from their parent

� This is necessary to keep a cap on memory use and a cluttered topic
tree when viewing

36

Capitalware's MQ Technical Conference v2.0.1.3

Other processing affected by the size and shape of
the tree (continued)

� What are the implications of the shape of the topic tree?
� The bigger the topic hierarchy, the more additional work incurred

� How can you minimize this additional work?
� Try not to have topics that are never or very rarely reused

� e.g. Don’t encode a unique job ID into a topic string

� Instead, add it as a message property and use a selector

� Don’t encode too many additional ‘/’ delimited layers in the tree where
unnecessary

� Remember that you can use Topic Tree Isolation to add levels to
the tree later, if needed

� If a topic is not re-published to and has no direct subscribers
(only through wildcards) it may get deleted before it is re-used,
meaning the creation overhead is incurred for every publish

� Use the TREELIFE queue manager property to control this

Capitalware's MQ Technical Conference v2.0.1.3

N

O

T

E

S

� When an application publishes a message on a topic string

– For every subscription associated with the topic node:

– A decision is made to deliver a copy of the message or not, if the subscription has a selector the message
properties are parsed to assess its suitability

� For this reason:

– By example, if there is a single topic with a thousand subscriptions, all with selectors, each publication will result in a
thousand checks.

– However, if there are one hundred topics, each with ten subscriptions, all with selectors, each publication will result
in ten checks.

– Both would result in the same number of publications, the latter with a lot less work

� And finally, in the background…

– Periodically the topic nodes are scanned to discover if they are still needed

– An unneeded topic node is a leaf topic with no publishers or subscriptions currently directly attached
� And the topic node has not been used for a period of time (minimum 30 minutes by default)

– In the case of unneeded topics they are deleted and unlinked from their parent

– This scanning is necessary to keep a cap on memory use and a cluttered topic tree when viewing.

� For this reason:

– The bigger the topic hierarchy, the more additional work incurred.

– Try not to have topics that are never or very rarely reused.

– E.g. Don’t encode a unique job ID into a topic string, add it as a message property.

– Don’t encode too many additional ‘/’ delimited layers in the tree where unnecessary.

– If a topic is not re-published too and has no direct subscribers (only through wildcards) it may get deleted before it is
re-used, meaning the creation overhead is incurred for every publish.

37

Capitalware's MQ Technical Conference v2.0.1.3

SummarySummary

Capitalware's MQ Technical Conference v2.0.1.3

Summary - WebSphere MQ Publish/Subscribe

� Application Programming

� Pub/Sub
� Event and State models

� Publishing
� MQPUT to topic

� Object Descriptor (MQOD) extended
for use with topics

� New MQPMO option

� Subscribing
� MQSUB

� Subscriber controls delivery
– Wildcards, selectors, etc

� Subscription Descriptor (MQSD) used
to control behavior

� Consume publications

� Use MQGET or Asynchronous
Consume

� Administration

� Topic tree administration control
� TOPIC objects

� Topic Tree Isolation

� Retention, Message Delivery, etc

� Topic tree Design
� Not too wide, not too deep
� Considerations

